Answer:
Explanation:
given,
mass = 2.2 kg
altitude(r₀) = (70 j) m
speed = 30 m/s
m_a = 0.77 kg
m_b =1.43 kg
part A strike ground (r_a)= (80 i) m
t = 6 s
r = 63.6 j m
by conservation of energy
<h3><u>CSMA/CD Protocol:
</u></h3>
Carrier sensing can transmit the data at anytime only the condition is before sending the data sense carrier if the carrier is free then send the data.
But the problem is the standing at one end of channel, we can’t send the entire carrier. Because of this 2 stations can transmit the data (use the channel) at the same time resulting in collisions.
There are no acknowledgement to detect collisions, It's stations responsibility to detect whether its data is falling into collisions or not.
<u>Example:
</u>
, at time t = 10.00 AM, A starts, 10:59:59 AM B starts at time 11:00 AM collision starts.
12:00 AM A will see collisions
Pocket Size to detect the collision.
CSMA/CD is widely used in Ethernet.
<u>Efficiency of CSMA/CD:</u>
- In the previous example we have seen that in worst case time require to detect a collision.
- There could be many collisions may happen before a successful completion of transmission of a packet.
We are given number of collisions (contentions slots)=4.
Distance = 1km = 1000m
Answer:
thats really hard how could you answerthis hhhhhhh
Answer:
True, <em>Regeneration is the only process where increases the efficiency of a Brayton cycle when working fluid leaving the turbine is hotter than working fluid leaving the compressor</em>.
Option: A
<u>Explanation:
</u>
To increase the efficiency of brayton cycle there are three ways which includes inter-cooling, reheating and regeneration. <em>Regeneration</em> technique <em>is used when a turbine exhaust fluids have higher temperature than the working fluid leaving the compressor of the turbine. </em>
<em>Thermal efficiency</em> of a turbine is increased as <em>the exhaust fluid having higher temperatures are used in heat exchanger where the fluids from the compressor enters and increases the temperature of the fluids leaving the compressor.
</em>