Answer:
using calculations Heat losses will be 4512 J
Answer:
The correct answer is: the following factors are needed to properly consider while selecting a brake or clutch:
-Engagement
-Friction
-Electromagnetic
-Mechanical
-Actuation
-Electric
-Fluid power
-Self-actuation
-Key concepts
-Application notes
-Selection criteria
Explanation:
Clutches and brakes are important devices in many rotating drive systems, it is very important to guarantee the security and the proper function of them accomplishing a high quality parameters in those factors.
Answer
given,
6 lanes divided highway 3 lanes in each direction
rolling terrain
lane width = 10'
shoulder on right = 5'
PHF = 0.9
shoulder on the left direction = 3'
peak hour volume = 3500 veh/hr
large truck = 7 %
tractor trailer = 3 %
speed = 55 mi/h
LOS is determined based on V p
10' lane weight ; f_{Lw}=6.6 mi/h
5' on right ; f_{Lc} = 0.4 mi/hr
3' on left ; no adjustment
3 lanes in each direction f n = 3 mi/h



= 0.877

= 1,555 veh/hr/lane

= (55 + 5) - 6.6 - 0.4 -3 -0
= 50 mi/h


level of service is D using speed flow curves and LOS for basic free moving of vehicle
Answer:
Answer to the following is as follows;
Explanation:
A request for proposal is a documentation that invites prospective contractors to submit business opportunities to an agency or corporation interested in procuring a commodities, product, or valuable resource through a bid procedure.
A request for proposal (RFP) is a commercial document that introduces a project, defines it, and invites eligible contractors to compete on its completion.
Answer:
12.332 KW
The positive sign indicates work done by the system ( Turbine )
Explanation:
Stagnation pressure( P1 ) = 900 kPa
Stagnation temperature ( T1 ) = 658K
Expanded stagnation pressure ( P2 ) = 100 kPa
Expansion process is Isentropic, also assume steady state condition
mass flow rate ( m ) = 0.04 kg/s
<u>Calculate the Turbine power </u>
Assuming a steady state condition
( p1 / p2 )^(r-1/r) = ( T1 / T2 )
= (900 / 100)^(1.4-1/1.4) = ( 658 / T2 )
= ( 9 )^0.285 = 658 / T2
∴ T2 = 351.22 K
Finally Turbine Power / power developed can be calculated as
Wt = mCp ( T1 - T2 )
= 0.04 * 1.005 ( 658 - 351.22 )
= 12.332 KW
The positive sign indicates work done by the system ( Turbine )