1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
satela [25.4K]
3 years ago
8

Suppose an underground storage tank has been leaking for many years, contaminating a groundwater and causing a contaminant conce

ntration directly beneath the site of 0.30 mg/L. The contamination is flowing at the rate of 0.5 ft/day toward a public drinking water well 1 mile away. The contaminant degrades with a rate constant of 1.94 x 10^-4 1/day. Draw a picture of the system. Estimate the steady-state pollutant concentration expected at the well. If the slope factor is 0.02 (mg/kg-day)^-1.
Required:
Estimate the cancer risk for an adult male drinking the water for 10 years.
Engineering
1 answer:
Ghella [55]3 years ago
7 0

Answer: the cancer risk for an adult male drinking the water for 10 years is 2.88 × 10⁻⁶

Explanation:

firstly, we find the time t required to travel for the contaminant to the well;

Given that, contamination flowing rate = 0.5 ft/day

Distance of well from the site = 1 mile =  5280 ft

so t = 5280 / 0.5 = 10560 days

k is given as 1.94 x 10⁻⁴ 1/day

next we find the Pollutant concentration Ct in the well

Ct = C₀ × e^-( 1.94 x 10⁻⁴ × 10560)

Ct = 0.3 x e^-(kt)  

Ct= 0.0386 mg/L

next we determine the chronic daily intake, CDI

CDI =  (C x CR x EF x ED) / (BW x AT)

where C is average concentration of the contaminant(0.0368mg/L), CR is contact rate (2L/day), EF is exposure frequency (350days/Year), ED is exposure duration (10 years), BW is average body weight (70kg).

now we substitute  

CDI = (0.0368 x 2 x 350 x 10) / ((70x 365) x 70)

= 257.7 / 1788500

= 0.000144 mg/Kg.day

CDI = 1.44 x 10⁻⁴ mg/kg.day  

Finally we calculate the cancer risk, R

Slope factor SF is given as 0.02 Kg.day/mg

Risk, R = I x SF

= 1.44 x 10⁻⁴ mg/kg.day  x 0.02Kg.day/mg    

R = 2.88 × 10⁻⁶

therefore the cancer risk for an adult male drinking the water for 10 years is 2.88 × 10⁻⁶

You might be interested in
Define Plastic vs elastic deformation.
Snowcat [4.5K]

Answer:

Plastic deformation, irreversible or permanent. Deformation mode in which the material does not return to its original shape after removing the applied load. This happens because, in plastic deformation, the material undergoes irreversible thermodynamic changes by acquiring greater elastic potential energy.

Elastic deformation, reversible or non-permanent. the body regains its original shape by removing the force that causes the deformation. In this type of deformation, the solid, by varying its tension state and increasing its internal energy in the form of elastic potential energy, only goes through reversible thermodynamic changes.

3 0
3 years ago
Technician A says that the most commonly used combustion chamber types include hemispherical, and wedge. Technician B says that
Inessa05 [86]

Answer:

Technician A and Technician B both are correct.

Explanation:

Technician A accurately notes that perhaps the forms of combustion process most widely used are hemispherical and cross.

Technician B also correctly notes that in several cylinder heads, cooling system and greases gaps and pathways are found.

6 0
3 years ago
A Rankine steam power plant is considered. Saturated water vapor enters a turbine at 8 MPa and exits at condenser at 10 kPa. The
Ray Of Light [21]

Answer:

0.31

126.23 kg/s

Explanation:

Given:-

- Fluid: Water

- Turbine: P3 = 8MPa , P4 = 10 KPa , nt = 85%

- Pump: Isentropic

- Net cycle-work output, Wnet = 100 MW

Find:-

- The thermal efficiency of the cycle

- The mass flow rate of steam

Solution:-

- The best way to deal with questions related to power cycles is to determine the process and write down the requisite properties of the fluid at each state.

First process: Isentropic compression by pump

       P1 = P4 = 10 KPa ( condenser and pump inlet is usually equal )

      h1 = h-P1 = 191.81 KJ/kg ( saturated liquid assumption )

       s1 = s-P1 = 0.6492 KJ/kg.K

       v1 = v-P1 = 0.001010 m^3 / kg

       

       P2 = P3 = 8 MPa( Boiler pressure - Turbine inlet )

       s2 = s1 = 0.6492 KJ/kg.K   .... ( compressed liquid )

- To determine the ( h2 ) at state point 2 : Pump exit. We need to determine the wok-done by pump on the water ( Wp ). So from work-done principle we have:

   

                           w_p = v_1*( P_2 - P_1 )\\\\w_p = 0.001010*( 8000 - 10 )\\\\w_p = 8.0699 \frac{KJ}{kg}

- From the following relation we can determine ( h2 ) as follows:

                          h2 = h1 + wp

                          h2 = 191.81 + 8.0699

                          h2 = 199.88 KJ/kg

                           

Second Process: Boiler supplies heat to the fluid and vaporize

- We have already evaluated the inlet fluid properties to the boiler ( pump exit property ).

- To determine the exit property of the fluid when the fluid is vaporized to steam in boiler ( super-heated phase ).

              P3 = 8 MPa

              T3 = ?  ( assume fluid exist in the saturated vapor phase )

              h3 = hg-P3 = 2758.7 KJ/kg

              s3 = sg-P3 = 5.7450 KJ/kg.K

- The amount of heat supplied by the boiler per kg of fluid to the water stream. ( qs ) is determined using the state points 2 and 3 as follows:

                          q_s = h_3 - h_2\\\\q_s = 2758.7 -199.88\\\\q_s = 2558.82 \frac{KJ}{kg}

Third Process: The expansion ( actual case ). Turbine isentropic efficiency ( nt ).

- The saturated vapor steam is expanded by the turbine to the condenser pressure. The turbine inlet pressure conditions are similar to the boiler conditions.

- Under the isentropic conditions the steam exits the turbine at the following conditions:

             P4 = 10 KPa

             s4 = s3 = 5.7450 KJ/kg.K ... ( liquid - vapor mixture phase )

             

- Compute the quality of the mixture at condenser inlet by the following relation:

                           x = \frac{s_4 - s_f}{s_f_g} \\\\x = \frac{5.745- 0.6492}{7.4996} \\\\x = 0.67947

- Determine the isentropic ( h4s ) at this state as follows:

                          h_4_s = h_f + x*h_f_g\\\\h_4_s = 191.81 + 0.67947*2392.1\\\\h_4_s = 1817.170187 \frac{KJ}{kg}        

- Since, we know that the turbine is not 100% isentropic. We will use the working efficiency and determine the actual ( h4 ) at the condenser inlet state:

                         h4 = h_3 - n_t*(h_3 - h_4_s ) \\\\h4 = 2758.7 - 0.85*(2758.7 - 181.170187 ) \\\\h4 = 1958.39965 \frac{KJ}{kg} \\

- We can now compute the work-produced ( wt ) due to the expansion of steam in turbine.

                        w_t = h_3 - h_4\\\\w_t = 2758.7-1958.39965\\\\w_t = 800.30034 \frac{KJ}{kg}

- The net power out-put from the plant is derived from the net work produced by the compression and expansion process in pump and turbine, respectively.

                       W_n_e_t = flow(m) * ( w_t - w_p )\\\\flow ( m ) = \frac{W_n_e_t}{w_t - w_p} \\\\flow ( m ) = \frac{100000}{800.30034-8.0699} \\\\flow ( m ) = 126.23 \frac{kg}{s}

Answer: The mass flow rate of the steam would be 126.23 kg/s

- The thermal efficiency of the cycle ( nth ) is defined as the ratio of net work produced by the cycle ( Wnet ) and the heat supplied by the boiler to the water ( Qs ):

                        n_t_h = \frac{W_n_e_t}{flow(m)*q_s} \\\\n_t_h = \frac{100000}{126.23*2558.82} \\\\n_t_h = 0.31

Answer: The thermal efficiency of the cycle is 0.31

       

   

7 0
3 years ago
I want a real answer to this, not just take my points
faust18 [17]

The reason you dream about him is because you continuously think about him, maybe even before falling asleep.

7 0
2 years ago
PLEASE HELP!! Its easy!!!
Rina8888 [55]

Answer:

C is tire

F is cassette

D is hub

4 0
3 years ago
Read 2 more answers
Other questions:
  • A turbine produces shaft power from a gas that enters the turbine with a (static) temperature of 628 K, a velocity of 143 m/s an
    7·1 answer
  • Air enters a horizontal, constant-diameter heating duct operating at steady state at 290 K, 1 bar, with a volumetric flow rate o
    15·2 answers
  • Matthew wants to manufacture a large quantity of products with standardized products having less variety. Which type of producti
    5·1 answer
  • A DNS record that's used to redirect traffic from one domain name to another is known as a _______ record.
    11·1 answer
  • What is not required for current to flow through a conductor
    12·1 answer
  • Part of the following pseudocode is incompatible with the Java, Python, C, and C++ language Identify the problem. How would you
    12·1 answer
  • The jib crane is supported by a pin at Cand rod AB. The rod can withstand a maximum tension of 40 kN. If the load has a mass of
    11·1 answer
  • A _______ contact allows current to flow when the switch's operator is not activated.?
    6·1 answer
  • Which step in the engineering design process likely broke down in the following scenario?
    14·1 answer
  • Which level of acceleration should you use when accelerating on a short highway entry ramp?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!