Answer:
c) 
Explanation:
Coulomb's law says that the force exerted between two charges is inversely proportional to the square of distance between them, and is given by the expression:

where k is a proportionality constant with the value 
In this case
, so we have:

Solving the equation for q, we have:



Replacing the given values:


Weight = (mass) x (acceleration of gravity)
Acceleration of gravity = 9.81 m/s² on Earth, 1.62 m/s² on the Moon.
The feather's weight is . . .
On Earth: (0.0001 kg) x (9.81 m/s²) = <em>0.000981 Newton </em>
On the Moon: (0.0001 kg) x (1.62 m/s²) = <em>0.000162 N</em>
The presence or absence of atmosphere makes no difference. In fact, the numbers would be the same if the feather were sealed in a jar, or spinning wildly in a tornado, or hanging by a thread, or floating in a bowl of water or chicken soup. Weight is just the force of gravity between the feather and the Earth. It's not affected by what's around the feather, or what's happening to it.
We divide the thin rectangular sheet in small parts of height b and length dr. All these sheets are parallel to b. The infinitesimal moment of inertia of one of these small parts is

where

Now we find the moment of inertia by integrating from

to

The moment of inertia is

(from (-a/2) to

(a/2))
Because the temperature causes it to go the physical change like if water is froze the temperate just caused it to go through another state of matter another example as if the ice got melted you would need high temperature to cause this change physically. Let me know if I help or if their is anything I can change for you to understand better