Answer:
The the recoil velocity of the hunter is 0.056 m/s in opposite direction of the bullet.
Explanation:
Given;
mass of bullet, m₁ = 4.2 g = 0.0042 kg
mass of hunter + gun = 72.5 kg
velocity of the bullet, u = 965 m/s
Momentum of the bullet when it was fired;
P = mv
P = 0.0042 x 965
P = 4.053 kg.m/s
Determine the recoil velocity of the hunter.
Total momentum = sum of the individual momenta
Total momentum = momentum of the bullet + momentum of the hunter
Apply the principle of conservation of momentum, sum of the momentum is equal to zero.

Therefore, the the recoil velocity of the hunter is 0.056 m/s in opposite direction of the bullet.
Water vapour and a drop in temperature to condense water vapour into a cloud. Something to see the cloud also, such as "pollution" particles.
Answer:
3. Kinetic energy of the system is maximum when potential energy is minimum.
Explanation:
Given that
Mass of block= m
Spring constant =K
Table is friction less.
As we know that in oscillatory motion ,when kinetic energy is maximum then potential energy will become minimum.
At the mean position:
Kinetic energy is maximum.
Potential energy is minimum.
At the extreme position:
Kinetic energy is minimum.
Potential energy is maximum.
At the mean position velocity of block will be maximum that is why it have maximum kinetic energy and at the extreme position the velocity of block will be minimum that is why it have minimum kinetic energy.
So from above we can say that kinetic energy of the system is maximum when potential energy is minimum.
Explanation:
Δy = v₀ t + ½ at²
Δy = (0 m/s) (7.0 s) + ½ (-9.8 m/s²)(7.0s)²
= -34.3
<span>It also doubles
The gravitational force between two masses is expressed as:
F = G*m1*m2/r^2
where
F = Force between the two masses
m1 = Mass of object 1
m2 = Mass of object 2
r = distance between centers of object 1 and object 2
G = Gravitational constant
The exact values of G, m1, m2, and r don't matter since all except for m1 is held constant. And when m1 suddenly doubles, the force attracting the two object to each other also doubles.</span>