Answer:

Explanation:
In this case we will use the Bohr Atomic model.
We have that: 
We can calculate the centripetal force using the coulomb formula that states:

Where K=
and r is the distance.
Now we can say:

The mass of the electron is =
Kg
The charge magnitud of an electron and proton are= 
Substituting what we have:
[/tex]
so:

Answer:
3 kg
Explanation:
Momentum before = momentum after
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
After jumping on the skateboard, the student and the skateboard have the same velocity, so v₁ = v₂.
m₁u₁ + m₂u₂ = (m₁ + m₂) v
(47.4 kg) (4.2 m/s) + m (0 m/s) = (47.4 kg + m) (3.95 m/s)
m = 3 kg
Hence, the horizontal velocity of the rover is 1.73 m/s
Answer:
a) T = (2,375 ± 0.008) s
, b) When comparing this interval with the experimental value we see that it is within the possible theoretical values.
Explanation:
a) The period of a simple pendulum is
T = 2π √ L / g
Let's calculate
T = 2π √1.40 / 9.8
T = 2.3748 s
The uncertainty of the period is
ΔT = dT / dL ΔL
ΔT = 2π ½ √g/L 1/g ΔL
ΔT = π/g √g/L ΔL
ΔT = π/9.8 √9.8/1.4 0.01
ΔT = 0.008 s
The result for the period is
T = (2,375 ± 0.008) s
b) the experimental measure was T = 2.39 s ± 0.01 s
The theoretical value is comprised in a range of [2,367, 2,387] when we approximate this measure according to the significant figures the interval remains [2,37, 2,39].
When comparing this interval with the experimental value we see that it is within the possible theoretical values.