Handsaw teeth are very sharp: to avoid being cut by the teeth, keep hands and fingers well away from the
path of the blade
Answer:
U just believe in yourself ..........
Explanation:
<em>If </em><em>there </em><em>a</em><em>r</em><em>e </em><em>more </em><em>electrons </em><em>than </em><em>protons </em><em>in </em><em>a </em><em>piece </em><em>of </em><em>matter </em><em>it </em><em>will </em><em>have </em><em>a </em><em>negative</em><em> </em><em>charge </em><em>.</em><em> </em><em>i</em><em>f</em><em> </em><em>there </em><em>are </em><em>fever </em><em>it </em><em>will </em><em>have </em><em>positive</em><em> </em><em>charge </em><em>and </em><em>if </em><em>there </em><em>are </em><em>e</em><em>qual </em><em>numbers </em><em>it </em><em>will </em><em>have </em><em>neutral</em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
.
.
.
.
.
.
.
.
hope it was helpful to you.....
Answer:
The distance measure from the wall = 36ft
Explanation:
Given Data:
w = 10
g =32.2ft/s²
x = 2
Using the principle of work and energy,
T₁ +∑U₁-₂ = T₂
0 + 1/2kx² -wh = 1/2 w/g V²
Substituting, we have
0 + 1/2 * 100 * 2² - (10 * 3) = 1/2 * (10/32.2)V²
170 = 0.15528V²
V² = 170/0.15528
V² = 1094.796
V = √1094.796
V = 33.09 ft/s
But tan ∅ = 3/4
∅ = tan⁻¹3/4
= 36.87°
From uniform acceleration,
S = S₀ + ut + 1/2gt²
It can be written as
S = S₀ + Vsin∅*t + 1/2gt²
Substituting, we have
0 = 3 + 33.09 * sin 36.87 * t -(1/2 * 32.2 *t²)
19.85t - 16.1t² + 3 = 0
16.1t² - 19.85t - 3 = 0
Solving it quadratically, we obtain t = 1.36s
The distance measure from the wall is given by the formula
d = VCos∅*t
Substituting, we have
d = 33.09 * cos 36. 87 * 1.36
d = 36ft
Answer:
use the percentage error relation
Explanation:
The percentage error in anything is computed from ...
%error = ((measured value)/(accurate value) -1) × 100%
__
The difficulty with voltage measurements is that the "accurate value" may be hard to determine. It can be computed from the nominal values of circuit components, but there is no guarantee that the components actually have those values.
Likewise, the measuring device may have errors. It may or may not be calibrated against some standard, but even measurement standards have some range of possible error.