Answer: Coefficient= 0.35 per day
Explanation:
To find the bio degradation reaction rate coefficient, we have
k= 
Here, the C lagoon= 20 mg/L
Q in= Q out= 8640 m³/d
C in= 100 mg/L
C out= 20 mg/L
V= 10 ha* 1* 10
V= 10⁵ m³
So, k= 
k= 0.35 per day
Explanation:
A.
H = Aeσ^4
Using the stefan Boltzmann law
When we differentiate
dH/dT = 4AeσT³
dH/dT = 4(0.15)(0.9)(5.67)(10^-8)(650)³
= 8.4085
Exact error = 8.4085x20
= 168.17
H(650) = 0.15(0.9)(5.67)(10^-8)(650)⁴
= 1366.376watts
B.
Verifying values
H(T+ΔT) = 0.15(0.9)(5.67)(10)^-8(670)⁴
= 1542.468
H(T+ΔT) = 0.15(0.9)(5.67)(10^-8)(630)⁴
= 1205.8104
Error = 1542.468-1205.8104/2
= 168.329
ΔT = 40
H(T+ΔT) = 0.15(0.9)(5.67)(10)^-8(690)⁴
= 1735.05
H(T-ΔT) = 0.15(0.9)(5.67)(10^-8)(610)⁴
= 1735.05-1059.83/2
= 675.22/2
= 337.61
Answer:
Explanation:
we have given E(t)=120 sin(12t)
R=5 ohm
L=0.2 H
ω=12 ( from expression of E)
ohm



=5.021 ohm
so amplitude of current = 
Answer:
(N-1) × (L/2R) = (N-1)/2
Explanation:
let L is length of packet
R is rate
N is number of packets
then
first packet arrived with 0 delay
Second packet arrived at = L/R
Third packet arrived at = 2L/R
Nth packet arrived at = (n-1)L/R
Total queuing delay = L/R + 2L/R + ... + (n - 1)L/R = L(n - 1)/2R
Now
L / R = (1000) / (10^6 ) s = 1 ms
L/2R = 0.5 ms
average queuing delay for N packets = (N-1) * (L/2R) = (N-1)/2
the average queuing delay of a packet = 0 ( put N=1)
Answer:
293 kg
Explanation:
Let's say the tension in each cable is Tb, Tc, and Td.
First, find the length of cable AD:
r = √(2² + 2² + 1²)
r = 3
Using similar triangles:
Tdx = 2/3 Td
Tdy = 2/3 Td
Tdz = 1/3 Td
Sum of the forces in the x direction:
∑F = ma
Tb − 2/3 Td = 0
Td = 3/2 Tb
Sum of the forces in the y direction:
∑F = ma
2/3 Td − Tc = 0
Td = 3/2 Tc
Sum of the forces in the z direction:
∑F = ma
1/3 Td − mg = 0
Td = 3mg
From the first two equations, we know Td is greater than Tb or Tc. So we need to set Td to 8.6 kN, or 8600 N.
8600 N = 3mg
m = 8600 N / (3 × 9.8 m/s²)
m ≈ 292.5 kg
Rounded to three significant figures, the maximum mass of the crate is 293 kg.