Answer:
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift
Explanation:
When a fluid flows around the surface of an object, it exerts a force on it. This force has two components, namely lift and drag.
The component of this force that is perpendicular (normal) to the freestream velocity is known as lift, while the component of this force that is parallel or in the direction of the fluid freestream flow is known as drag.
Lift is as a result of pressure differences, while drag results from forces due to pressure distributions over the object surface, and forces due to skin friction or viscous force.
Thus, drag results from the combination of pressure and viscous forces while lift results only from the<em> pressure differences</em> (not pressure forces as was used in option D).
The only correct option left is "A"
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift
Answer:
a. V = 109.64 × 10⁵ ft/min
b. Mw = 654519.54 kg/hr
Explanation:
Given Parameters
mass flow rate of water, Mw = 90000g/min = 6607.33 kg/s
inlet temperature of water, T1 = 84 F = 28.89 C
outlet temperature of water, T2 = 68 F = 20 C
specific heat capacity of water, c = 4.18kJ/kgK
rate of heat remover from water, Qw is given by
Qw = 6607.33[28.89 - 20] * 4.18
Qw = 245529.545kw
For air, inlet condition
DBT = 70 F hi = 43.43 kJ/kg
WBT = 60 F wi = 0.00874 kJ/kg
u1 = 0.8445 m/kg
oulet condition,
DBT = 70 F RH = 100.1
h1 = 83.504kJ/kg
Wo = 0.222kJ/kg
check the attached file for complete solution
Answer:
the quality of the refrigerant exiting the expansion valve is 0.2337 = 23.37 %
Explanation:
given data
pressure p1 = 1.4 MPa = 14 bar
temperature t1 = 32°C
exit pressure = 0.08 MPa = 0.8 bar
to find out
the quality of the refrigerant exiting the expansion valve
solution
we know here refrigerant undergoes at throtting process so
h1 = h2
so by table A 14 at p1 = 14 bar
t1 ≤ Tsat
so we use equation here that is
h1 = hf(t1) = 332.17 kJ/kg
this value we get from table A13
so as h1 = h2
h1 = h(f2) + x(2) * h(fg2)
so
exit quality = 
exit quality = 
so exit quality = 0.2337 = 23.37 %
the quality of the refrigerant exiting the expansion valve is 0.2337 = 23.37 %
Answer:
Please see the attached file for the complete answer.
Explanation: