To solve this problem we will use the mathematical definition of the light years in metric terms, from there, through the kinematic equations of motion we will find the distance traveled as a function of the speed in proportion to the elapsed time. Therefore we have to
means Light Year
Then

If we have that

Where,
v = Velocity
x = Displacement
t = Time
We have that
= Speed of light





Therefore will take 14.399 years
Answer:
1.5 m/s²
Explanation:
For the block to move, it must first overcome the static friction.
Fs = N μs
Fs = (45 N) (0.42)
Fs = 18.9 N
This is less than the 36 N applied, so the block will move. Since the block is moving, kinetic friction takes over. To find the block's acceleration, use Newton's second law:
∑F = ma
F − N μk = ma
36 N − (45 N) (0.65) = (45 N / 9.8 m/s²) a
6.75 N = 4.59 kg a
a = 1.47 m/s²
Rounded to two significant figures, the block's acceleration is 1.5 m/s².
Usually the coefficient of static friction is greater than the coefficient of kinetic friction. You might want to double check the problem statement, just to be sure.
Answer:
W = F * s
Work done equals applied force * distance traveled
Apparent weight = M g (1 - sin θ) since some of applied force will lighten sled
μ = coefficient of kinetic friction
F cos θ = force applied to motion of sled
s = distance traveled
[μ M g (1 - sin θ)] cos θ * s = work done in moving sled
Note that F = μ M g if applied force is in the horizontal direction
Answer: The distance between the man and the plane increasing at a rate of 400ft/s
Explanation: Please see the attachments below