Answer:
The magnitude of the force of friction equals the magnitude of my push
Explanation:
Since the crate moves at a constant speed, there is no net acceleration and thus, my push is balanced by the frictional force on the crate. So, the magnitude of the force of friction equals the magnitude of my push.
Let F = push and f = frictional force and f' = net force
F - f = f' since the crate moves at constant speed, acceleration is zero and thus f' = ma = m (0) = 0
So, F - f = 0
Thus, F = f
So, the magnitude of the force of friction equals the magnitude of my push.
I think you're saying that once you start pushing on the cars, you want to be able to stop each one in the same time.
This is sneaky. At first, I thought it must be both 'c' and 'd'. But it's not
kinetic energy, for reasons I'm not ambitious enough to go into.
(And besides, there's no great honor awarded around here for explaining
why any given choice is NOT the answer.)
The answer is momentum.
Momentum is (mass x speed). Change in momentum is (force x time).
No matter the weight (mass) or speed of the car, the one with the greater
momentum is always the one that will require the greater (force x time)
to stop it. If the time is the same for any car, then more momentum
will always require more force.
Answer:
Explanation:
According to work energy theorem
change in kinetic energy of truck = work done against it
work done against it = force x displacement
= - 850 x 8 = 6800 J
change in kinetic energy of truck = - 6800 J .
energy will be reduced by 6800 J
No, and no. In fact, the consequences are exactly opposite to your description.
When you drop soap on the ground, the soap ... which had been clean ... gets dirty, and the ground ... which had been dirty ... gets clean.
Answer:

Explanation:
The speed of light is given by
and
hence

Speed of light is given by
