1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elina [12.6K]
3 years ago
13

Given the height of rod,length of shadow of tree and length of shadow of the rod, estimate the height of the tree? Given:height

of rod=150cm,Length of shadow of the rod=120cm and length of shadow of the tree =800cm​
Physics
1 answer:
diamong [38]3 years ago
5 0

Answer:

1000 cm.

Explanation:

To obtain the estimated tree height :

(Height of rod / length of rod shadow) = (height of tree / length of tree shadow)

Substituting values into the formula :

(150cm / 120 cm) = (height of tree / 800 cm)

Using cross multiplication :

Height of tree * 120 = 150 * 800

Height of tree = (150 * 800) / 120

Height of tree = 120,000 / 120

Height of tree = 1000

Hence, estimate height of tree = 1000 cm

You might be interested in
A 2.7-kg block is released from rest and allowed to slide down a frictionless surface and into a spring. The far end of the spri
exis [7]

a) The speed of the block at a height of 0.25 m is 2.38 m/s

b) The compression of the spring is 0.25 m

c) The final height of the block is 0.54 m

Explanation:

a)

We can solve the problem by using the law of conservation of energy. In fact, the total mechanical energy (sum of kinetic+gravitational potential energy) must be conserved in absence of friction. So we can write:

U_i +K_i = U_f + K_f

where

U_i is the initial potential energy, at the top

K_i is the initial kinetic energy, at the top

U_f is the final potential energy, at halfway

K_f is the final kinetic energy, at halfway

The equation can be rewritten as

mgh_i + \frac{1}{2}mu^2 = mgh_f + \frac{1}{2}mv^2

where:

m = 2.7 kg is the mass of the block

g=9.8 m/s^2 is the acceleration of gravity

h_i = 0.54 is the initial height

u = 0 is the initial speed

h_f = 0.25 m is the final height of the block

v is the final speed when the block is at a height of 0.25 m

Solving for v,

v=\sqrt{u^2+2g(h_i-h_f)}=\sqrt{0+2(9.8)(0.54-0.25)}=2.38 m/s

b)

The total mechanical energy of the block can be calculated from the initial conditions, and it is

E=K_i + U_i = 0 + mgh_i = (2.7)(9.8)(0.54)=14.3 J

At the bottom of the ramp, the gravitational potential energy has become zero (because the final heigth is zero), and all the energy has been converted into kinetic energy. However, then the block compresses the spring, and the maximum compression of the spring occurs when the block stops: at that moment, all the energy of the block has been converted into elastic potential energy of the spring. So we can write

E=E_e = \frac{1}{2}kx^2

where

k = 453 N/m is the spring constant

x is the compression of the spring

And solving for x, we find

x=\sqrt{\frac{2E}{k}}=\sqrt{\frac{2(14.3)}{453}}=0.25 m

c)

If there is no friction acting on the block, we can apply again the law of conservation of energy. This time, the initial energy is the elastic potential energy stored in the spring:

E=E_e = 14.3 J

while the final energy is the energy at the point of maximum height, where all the energy has been converted into gravitational potetial energy:

E=U_f = mg h_f

where h_f is the maximum height reached. Solving for this quantity, we find

h_f = \frac{E}{mg}=\frac{14.3}{(2.7)(9.8)}=0.54 m

which is the initial height: this is correct, because the total mechanical energy is conserved, so the block must return to its initial position.

Learn more about kinetic and potential energy:

brainly.com/question/1198647

brainly.com/question/10770261

brainly.com/question/6536722

#LearnwithBrainly

5 0
3 years ago
Acceleration = change of velocity divided by time interval = Δv/Δt.
MariettaO [177]

Answer:

a=2.378 m/s^2

Explanation:

a=Δv/Δt------eq(1)

Δv=Vf-Vi=120 km/h-0 km/h=120 km/h

or Δv=33.3 m/sec

or time=t=14s

putting values in eq(1)

a=33.3/14

a=2.378 m/s^2

6 0
3 years ago
Explain how the basic unit are combined to give the derived units of force, velocity, pressure and work
LuckyWell [14K]

Velocity:

Velocity is change in displacement with respect to time:

\frac{\Delta x}{\Delta t}

Analysing the units, meters (displacement) and seconds (time) are basic units:

\frac{m}{s}

Therefore the unit of velocity is m/s

Force:

Newton's second law of motion:

F = ma

Kilogram (mass) is a basic unit, and accelerations unit can be found using the equation:

a=\frac{\Delta v}{\Delta t}

Analysing the units:

\frac{\frac{m}{s}}{s}=\frac{m}{s^2}

Therefore, the unit of force is:

kg\frac{m}{s^2}

Pressure:

Pressure is given by the equation:

P=\frac{F}{S} where S is area of effect, F is force

Area for a basic rectangle (geometric shape is arbitrary for dimensional analysis) is found by multiplying two lengths:

[l^2]=m^2, the unit of area

Dividing the aforementioned unit of force by the unit of area:

\frac{kg\frac{m}{s^2}}{m^2}=\frac{kg}{ms^2}, the unit of pressure

Work:

Work is given by the equation:

W=\vec{F}\cdot \vec{x}, (dot product may be assumed as normal multiplication for the purposes of unit analysis)

Knowing displacement's (x) unit is m:

[W]=\frac{kgm}{s^2}m=\frac{kgm^2}{s^2}, the unit of work.

3 0
3 years ago
The arrows in the chart below represent phase transitions.
Vikentia [17]

Answer:

1, 2, and 3.

Explanation:

Hello.

In this process, since the phase transitions that require energy are those that pass from a state with less energy or more molecular order to a state with more energy or less molecular order, say, from solid to liquid (melting), from liquid to gas (boiling) and from solid to gas (sublimation), we can conclude that the arrows representing heat energy gained are 1, 2, and 3 since 1 represents boiling, 2 melting and 3 sublimation.

Best regards.

6 0
3 years ago
Suppose you have two solid bars, both with square cross-sections of 1 cm2. They are both 24.6 cm long, but one is made of copper
vodka [1.7K]

Explanation:

Expression to calculate thermal resistance for iron (R_{I}) is as follows.

             R_{I} = \frac{L_{I}}{k_{I} \times A_{I}}  

where,   L_{I} = length of the iron bar

             k_{I} = thermal conductivity of iron

             A_{I} = Area of cross-section for the iron bar

Thermal resistance for copper (R_{c}) = \frac{L_{c}}{k_{c} \times A_{c}}[/tex]

where,  L_{c} = length of copper bar

             k_{c} = thermal conductivity of copper

            A_{c} = Area of cross-section for the copper bar

Now, expression for the transfer of heat per unit cell is as follows.

           Q = \frac{(100^{o} - 0^{o}}{\frac{L_{I}}{k_{I}.A_{I}} + \frac{L_{c}}{k_{c}.A_{c}}}

 Putting the given values into the above formula as follows.

       Q = \frac{(100^{o} - 0^{o})}{\frac{L_{I}}{k_{I}.A_{I}} + \frac{L_{c}}{k_{c}.A_{c}}}

  = \frac{(100^{o} - 0^{o})}{21 \times 10^{-2} m[\frac{1}{73 \times 10^{-4}m^{2}} + \frac{1}{386 \times 10^{-4}m^{2}}}

           = 2.92 Joule

It is known that heat transfer per unit time is equal to the power conducted through the rod. Hence,

                 P = \frac{Q}{T}

Here, T is 1 second so, power conducted is equal to heat transferred.

So,           P = 2.92 watt

Thus, we can conclude that 2.92 watt power will be conducted through the rod when it reaches steady state.

7 0
3 years ago
Other questions:
  • If molecules in a substance move FASTER will the TEMPERATURE increase or decrease?
    14·1 answer
  • The speed of a sound wave depends mostly on ?
    7·1 answer
  • Drag the tiles to the correct boxes to complete the pairs.
    11·1 answer
  • A thin, 75.0 cm wire has a mass of 16.5 g. One end is tied to a nail, and the other is attached to a screw that can be adjusted
    7·1 answer
  • A 20-kilogram mass is traveling with a velocity of 3 m/s. What is the object's kinetic energy?
    12·1 answer
  • A cube of wood 15.0 cm on each side is tied to the bottom of a tank filled with water to a depth of 50 cm. The tension in the st
    14·1 answer
  • What is the weight of an object when the object has a mass of 22kg
    8·1 answer
  • What is the smallest particle of an element that still retains of that element
    9·1 answer
  • Match the following. Column A 1. Torque 2. Centre of gravity 3. Plumb line Column B A. Line of centre of gravity B. Maximum cons
    6·1 answer
  • If the velocity of an object is 9 m/s and its momentum is 72 kgm/s, what is its mass
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!