Answer:
Large molecules tend to have greater boiling points because the London dispersion forces are stronger within.
Explanation:
Answer:
197mL of 0,506M HCl
Explanation:
The reaction of HCl + BaCO₃ is:
BaCO₃(s) + 2HCl → BaCl₂(aq) + CO₂ + H₂O.
The moles of BaCO₃ in 9,85 g are:
9,85 g of BaCO₃ ×
= <em>0,0499 moles of BaCO₃</em>
As 1 mol of BaCO₃ reacts with two moles of HCl, for a complete reaction of BaCO₃ to dissolve this compound in water you need:
0,0499 moles of BaCO₃ ×
=<em> 0,0998 moles of HCl</em>
If you have a 0,506M HCl, you need to add:
0,0998 moles of HCl×
= 0,197 L ≡ 197mL
I hope it helps!
Answer:
Mass of proton is
<h2>
1.6726219 × 10-27 Kg</h2>
HOPE U UNDERSTOOD
MARK AS BRAINLIEST ONE
THANKS
IF ANY DOUBTS? PLS COMMENT
The time taken for the isotope to decay is 46 million years.
We'll begin by calculating the number of half-lives that has elapsed. This can be obtained as follow:
- Original amount (N₀) = 50.25 g
- Amount remaining (N) = 16.75
- Number of half-lives (n) =?
2ⁿ = N₀ / N
2ⁿ = N₀ / N
2ⁿ = 50.25 / 16.75
2ⁿ = 3
Take the log of both side
Log 2ⁿ = 3
nLog 2 = Log 3
Divide both side by log 2
n = Log 3 / Log 2
n = 2
Finally, we shall determine the time.
- Half-life (t½) = 23 million years
- Number of half-lives (n) = 2
t = n × t½
t = 2 × 23
t = 46 million years
Learn more about half-life: brainly.com/question/25927447
Non of the above because protons and neutrons don’t mix with each one there