A. The object is made of stone or metal, which always sink.
B. The force of gravity is stronger than the buoyant force.
C. The buoyant force is stronger than the force of gravity.
D. The mass of the item is greater than its gravity
The answer is C
Answer:
It is a misconception that theories turn into laws with enough research.
Hope it helps
The force acting on the ball are unbalanced. Reactionary momentum force (that originated as a result of the swing of the bat) is the most powerful.
Yes friction is acting on the ball. In course of journey it would slow the ball down and make it trace a parabolic path rather than straight path as intended by hitter.
Explanation:
As the hitter hits the ball, momentum of the bat due to swing (mass of the bat*velocity provided by the batsman swinging action of bat) gets transferred on the ball on its impact with the bat.
Since ball’s mass is quite small as compared to the bat, the velocity of the ball increases by the same factor by which the ball’s mass is lower than the bat’s mass. This velocity causes forward motion of the ball (of course in the direction of bat’s motion, here the batsman intends to send the ball straight away hence the ball would move straight).
Various forces on ball is-
- Reactionary momentum force -bat’s force (most powerful force)
- The frictional force of the air (opposing the motion of the ball through the air)
- Gravity force (pulling the ball down to the Earth)
As a combined effect of these force when all the force remains unbalanced, the ball moves away in the straight path under the impact of bats momentum which was most powerful of all.
Frictional force and Gravity force continue acting on the ball. While frictional forces decrease the ball velocity through the air, gravity force pulls it down thus deflecting its direction. Under the combined impact of declining bats momentum, friction force and gravity force, the ball traces a parabolic path (in accordance with the first law of motion from Newton)
Answer:
Explanation:
is the magnetic quantum number.
The only possible value for the magnetic quantum number for an electron in an s orbital is 0.
The first three quantun numbers are:
- n: principal quantum number. It may have positive integer values: 1, 2, 3, 4,5, 6, 7, ...
: Azimuthal or angular momentum quantum number. It may have integer values from 0 to n - 1.
This quantum number is related to the type (or shape) of the orbital:
For s orbitals
For p orbitals
For d orbitals
For f orbitals
In this case, it is an s orbital, so we have
.
, the third quantum number can have integer values
to 
Since, for the s orbitals
, the only possible value for
is zero.
Answer:
A) conductors
Explanation:
A conductor can be defined as any material or object that allows the free flow of current or electrons (charge) in one or more directions in an electrical circuit. Some examples of a conductor are metals, tungsten, copper, aluminum, iron, graphite, etc.
Basically, the main purpose of a conductor in physics is to provide a low-resistance path between electrical circuits or components. This low-resistance path is to ensure that the electrical components allows the free flow of electrons and thus, enabling charge transfer.
Hence, the electrons in conductors move about more freely than the electrons in insulators which is why this type of material can be used to create electric circuits because it would significantly provide a low-resistance path between the electric circuits.