Pitch is way to relate a sound to its frequency. High frequencies have high pitches (think of a flute), and low frequencies have low pitches (think of a bass). <span>
</span>
Answer:
x = 11.23 m
Explanation:
For this interesting exercise, we must use angular kinematics, linear kinematics and the relationship between angular and linear quantities.
Let's reduce to SI system units
θ = 155 rev (2pi rad / rev) = 310π rad
α = 2.00rev / s2 (2pi rad / 1 rev) = 4π rad / s²
Let's look for the angular velocity at the time the piece is released, with starting from rest the initial angular velocity is zero (wo = 0)
w² = w₀² + 2 α θ
w =√ 2 α θ
w = √(2 4pi 310pi)
w = 156.45 rad / s
The relationship between angular and linear velocity
v = w r
v = 156.45 0.175
v = 27.38 m / s
In this part we have the linear speed and the height that it travels to reach the floor, so with the projectile launch equations we can find the time it takes to arrive
y = t - ½ g t²
As it leaves the highest point its speed is horizontal
y = 0 - ½ g t²
t = √ (-2y / g)
t = √ (-2 (-0.820) /9.8)
t = 0.41 s
With this time we calculate the horizontal distance, because the constant horizontal speed
x = vox t
x = 27.38 0.41
x = 11.23 m
To solve this problem it is necessary to apply the kinematic equations of motion and Hook's law.
By Hook's law we know that force is defined as,
Where,
k = spring constant
x = Displacement change
PART A) For the case of the spring constant we can use the above equation and clear k so that
Therefore the spring constant for each one is 11876.92/2 = 5933.46N/m
PART B) In the case of speed we can obtain it through the period, which is given by
Re-arrange to find \omega,
Then through angular kinematic equations where angular velocity is given as a function of mass and spring constant we have to
Therefore the mass of the trailer is 4093.55Kg
PART C) The frequency by definition is inversely to the period therefore
Therefore the frequency of the oscillation is 0.4672 Hz
PART D) The time it takes to make the route 10 times would be 10 times the period, that is
Therefore the total time it takes for the trailer to bounce up and down 10 times is 21.4s
Answer:
3.6 x 10⁶ Pa
Explanation:
A = Area of the heel = 1.50 cm² = 1.50 x 10⁻⁴ m²
m = mass of the woman = 55.0 kg
g = acceleration due to gravity = 9.8 m/s²
Force of gravity on the heel is given as
F = mg
Inserting the values
F = (55) (9.8)
F = 539 N
Pressure exerted on the floor is given as
P = 3.6 x 10⁶ Pa