Answer:
paramagnetic
Explanation:
The complex ion is : [Cr(CN)₆]³⁻
Oxidation state of Cr in [Cr(CN)₆]³⁻ is:
x + (-1)6 = -3
x = +3
CN⁻ is a strong field ligand which can result in pairing of the electrons.
The electronic configuration of Cr is:
1s²2s²2p⁶3s²3p⁶3d⁵4s¹
The electronic configuration of Cr³⁺ is:
1s²2s²2p⁶3s²3p⁶3d³
<u>These 3 electrons will be singly present in the 3 degenerate t₂g orbitals and per Hund's rule, pairing will not occur in the same level energy orbitals. So , no. of unpaired electrons will be 3 and the complex will be paramagnetic.</u>
Litmus paper is often used to determine the range of pH of an aqueous solution. Litmus paper specifically contains 10-15 natural dyes, in the presence of acidic solution it turns red, it turns purple when the solution is neutral and blue when dealing with basic solutions. Red litmus paper stays red for a neutral and acidic solution but changes to blue in the presence of alkaline solutions. On the other hand, blue litmus paper turns red when a solution is acidic but stays blue for neutral and alkaline solutions. Since the paper turns purple in the presence of solution 1 we know that is neutral, meanwhile, since it turns blue for the second solution we know that solution II is a base correct answer is C
Answer:
1.89 nol Cu(NO3)2
Explanation:
if you calculate it it will be 1.89
Answer:
0.0611M of HNO3
Explanation:
<em>The concentration of the NaOH solution must be 0.1198M</em>
<em />
The reaction of NaOH with HNO3 is:
NaOH + HNO3 → NaNO3 + H2O
<em>1 mole of NaOH reacts per mole of HNO3.</em>
That means the moles of NaOH used in the titration are equal to moles of HNO3.
<em>Moles HNO3:</em>
12.75mL = 0.01275L * (0.1198mol / L) = 0.0015274 moles NaOH = Moles HNO3.
In 25.00mL = 0.025L -The volume of the aliquot-:
0.00153 moles HNO3 / 0.025L =
<h3> 0.0611M of HNO3</h3>