Ann wants to choose from two telephone plans. Plan A involves a fixed charge of $10 per month and call charges at $0.10 per minute. Plan B involves a fixed charge of $15 per month and call charges at $0.08 per minute.
Plan A $10 + .10/minute
Plan B $15 + .08/minute
If 250 minutes are used:
Plan A: $10+$25=$35
Plan B: $15+$20=$35
If 400 minutes are used:
Plan A: $10+$40=$50
Plan B: $15+$32=$47
B is the correct answer. How to test it:
Plan A: $10+(.10*249 minutes)
$10+$24.9=$34.9
Plan B: $15+(.08*249 minutes)
$15+$19.92=$34.92
Plan A < Plan B if less than 250 minutes are used.
Answer:
Radius: 

Step-by-step explanation:
Given

Solving (a): The radius of the circle
First, we express the equation as:

Where


So, we have:

Divide through by 9

Rewrite as:

Group the expression into 2
![[x^2 + 3x] + [y^2+ \frac{12}{9}y] =- \frac{19}{9}](https://tex.z-dn.net/?f=%5Bx%5E2%20%20%2B%203x%5D%20%2B%20%5By%5E2%2B%20%5Cfrac%7B12%7D%7B9%7Dy%5D%20%3D-%20%5Cfrac%7B19%7D%7B9%7D)
![[x^2 + 3x] + [y^2+ \frac{4}{3}y] =- \frac{19}{9}](https://tex.z-dn.net/?f=%5Bx%5E2%20%20%2B%203x%5D%20%2B%20%5By%5E2%2B%20%5Cfrac%7B4%7D%7B3%7Dy%5D%20%3D-%20%5Cfrac%7B19%7D%7B9%7D)
Next, we complete the square on each group.
For ![[x^2 + 3x]](https://tex.z-dn.net/?f=%5Bx%5E2%20%20%2B%203x%5D)
1: Divide the 
2: Take the 
3: Add this 
So, we have:
![[x^2 + 3x] + [y^2+ \frac{4}{3}y] =- \frac{19}{9}](https://tex.z-dn.net/?f=%5Bx%5E2%20%20%2B%203x%5D%20%2B%20%5By%5E2%2B%20%5Cfrac%7B4%7D%7B3%7Dy%5D%20%3D-%20%5Cfrac%7B19%7D%7B9%7D)
![[x^2 + 3x + (\frac{3}{2})^2] + [y^2+ \frac{4}{3}y] =- \frac{19}{9}+ (\frac{3}{2})^2](https://tex.z-dn.net/?f=%5Bx%5E2%20%20%2B%203x%20%2B%20%28%5Cfrac%7B3%7D%7B2%7D%29%5E2%5D%20%2B%20%5By%5E2%2B%20%5Cfrac%7B4%7D%7B3%7Dy%5D%20%3D-%20%5Cfrac%7B19%7D%7B9%7D%2B%20%28%5Cfrac%7B3%7D%7B2%7D%29%5E2)
Factorize
![[x + \frac{3}{2}]^2+ [y^2+ \frac{4}{3}y] =- \frac{19}{9}+ (\frac{3}{2})^2](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%5E2%2B%20%5Cfrac%7B4%7D%7B3%7Dy%5D%20%3D-%20%5Cfrac%7B19%7D%7B9%7D%2B%20%28%5Cfrac%7B3%7D%7B2%7D%29%5E2)
Apply the same to y
![[x + \frac{3}{2}]^2+ [y^2+ \frac{4}{3}y +(\frac{4}{6})^2 ] =- \frac{19}{9}+ (\frac{3}{2})^2 +(\frac{4}{6})^2](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%5E2%2B%20%5Cfrac%7B4%7D%7B3%7Dy%20%2B%28%5Cfrac%7B4%7D%7B6%7D%29%5E2%20%5D%20%3D-%20%5Cfrac%7B19%7D%7B9%7D%2B%20%28%5Cfrac%7B3%7D%7B2%7D%29%5E2%20%2B%28%5Cfrac%7B4%7D%7B6%7D%29%5E2)
![[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =- \frac{19}{9}+ (\frac{3}{2})^2 +(\frac{4}{6})^2](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%20%2B%5Cfrac%7B4%7D%7B6%7D%5D%5E2%20%3D-%20%5Cfrac%7B19%7D%7B9%7D%2B%20%28%5Cfrac%7B3%7D%7B2%7D%29%5E2%20%2B%28%5Cfrac%7B4%7D%7B6%7D%29%5E2)
![[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =- \frac{19}{9}+ \frac{9}{4} +\frac{16}{36}](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%20%2B%5Cfrac%7B4%7D%7B6%7D%5D%5E2%20%3D-%20%5Cfrac%7B19%7D%7B9%7D%2B%20%5Cfrac%7B9%7D%7B4%7D%20%2B%5Cfrac%7B16%7D%7B36%7D)
Add the fractions
![[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =\frac{-19 * 4 + 9 * 9 + 16 * 1}{36}](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%20%2B%5Cfrac%7B4%7D%7B6%7D%5D%5E2%20%3D%5Cfrac%7B-19%20%2A%204%20%2B%209%20%2A%209%20%2B%2016%20%2A%201%7D%7B36%7D)
![[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =\frac{21}{36}](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%20%2B%5Cfrac%7B4%7D%7B6%7D%5D%5E2%20%3D%5Cfrac%7B21%7D%7B36%7D)
![[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =\frac{7}{12}](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%20%2B%5Cfrac%7B4%7D%7B6%7D%5D%5E2%20%3D%5Cfrac%7B7%7D%7B12%7D)
![[x + \frac{3}{2}]^2+ [y +\frac{2}{3}]^2 =\frac{7}{12}](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%20%2B%5Cfrac%7B2%7D%7B3%7D%5D%5E2%20%3D%5Cfrac%7B7%7D%7B12%7D)
Recall that:

By comparison:

Take square roots of both sides

Split

Rationalize





Solving (b): The center
Recall that:

Where


From:
![[x + \frac{3}{2}]^2+ [y +\frac{2}{3}]^2 =\frac{7}{12}](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%20%2B%5Cfrac%7B2%7D%7B3%7D%5D%5E2%20%3D%5Cfrac%7B7%7D%7B12%7D)
and 
Solve for h and k
and 
Hence, the center is:

A parallelogram has symmetry wii respect to the line that C- Bisects it from opposite vertices.
All the others are never true for a parallelogram. You can try cutting out a parallelogram and folding it to see for yourself!
Hope this helps!!
Word | know | Unknown
Language| 12 | x
Total | 180 | 28980
Use cross multiply:
12(28980) = 180(x)
347760 = 180x
347760/180=1932
Not sure if your the same person but I had already done the work for this problem....