The given equilibrium reaction is,

The given reaction is exothermic. So, heat energy will be a product. Therefore, decreasing the temperature (heat energy) would lead to the formation of more products as when the amount of energy which is a product is reduced, there is more room for the products to form.
Increasing the pressure would shift the equilibrium towards that side which has least number of moles of the gaseous substance. Hence, here increasing the pressure would lead to the formation of more products by shifting the equilibrium towards the right side.
Decreasing the volume would make the equilibrium shift towards the least number of moles of the gaseous substance. So, here in this equilibrium decreasing the volume would lead to the formation of more products.
Answer:
whah the other dude said :) also stay safe
Explanation:
<h3>
Answer:</h3>
3.03 × 10²⁵ formula units KCl
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Unit 0</u>
- Reading a Periodic Table
- Writing Compounds
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
50.3 mol KCl (Potassium chloride)
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
<u />
= 3.02907 × 10²⁵ formula units KCl
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.02907 × 10²⁵ formula units KCl ≈ 3.03 × 10²⁵ formula units KCl