Answer:
atoms of hydrogen are there in
35.0 grams of hydrogen gas.
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:
1 mole of hydrogen
=
atoms
17.5 mole of hydrogen
=
atoms
There are
atoms of hydrogen are there in
35.0 grams of hydrogen gas.
nuclear power--used to turn turbines...
fossil fuels--burned to provide energy that is....
renewable energy--energy that with come back after use
outlet--a device....
steam--nuclear reactors....
I'm not sure but I tried lol,lemme know if I'm wrong :D
Answer:
d. Hydrophobic molecules are attracted to each other.
Explanation:
The term “hydrophobic effect” is associated with the spontaneous tendency of macromolecules, such as proteins, to prefer a conformation in an aqueous medium, with hydrophobic groups facing the interior of the mac romolecule, favoring attractive intramolecular interactions, and hydrophilic groups exposed on the surface, for maximize interactions with water molecules in the medium. This is because the hydrophobic molecules are attracted to each other, allowing them to turn inward.
Potential energy is energy due to an object's height above the ground.
Potential energy = mass x gravity x height
Kinetic energy is energy due to the motion of the object.
Kinetic energy = 1/2 x mass x velocity²
1.
The ball is not moving and is at a height above the ground so it has only potential energy.
P.E = 2 x 9.81 x 40
P.E = 784.8 J
2.
The ball is moving and has a height above the Earth's surface so it has both kinetic and potential energy.
P.E = same as part 1 = 784.8 J
K.E = 1/2 x 2 x 5²
K.E = 25 J
3.
The ball has no height above the Earth's surface and is moving so it has only kinetic energy.
K.E = 1/2 x 2 x 10²
K.E = 100 J
4.
50000 = 1/2 x 1000 x v²
v = 10 m/s
5.
39200 = 200 x 9.81 x h
h = 20.0 m
6.
12.5 = 1/2 x 1 x v²
v = 5 m/s
98 = 1 x 9.81 x h
h = 10.0 m
Fix ur transition, it sounds choppy