Answer:
346 * 10⁶ m
Explanation:
The force of gravity of the earth that will cancel the the force of gravity exerted by the moon will be equal to each other
Let
be the force of gravity exerted by the earth
and let
be the force of gravity exerted by the moon
According to Newton's law of universal gravitation, the force of attraction between two different masses, m₁ and m₂ separated by a distance, d, is given by:

Mass of the earth, 
Mass of the moon, 
Mass of the satellite, 
...............................(1)
The earth and the moon are separated by a distance, 3.844 * 10⁸ m
............................(2)
Equating equations (1) and (2)


Factorising out 

Solving for d in the quadratic equation above:
d = 346 * 10⁶ m
An antibaryon composed of two antiup quarks
and one antidown quark would have a charge of (2) −1e.
Answer:
True
Explanation:
The complete question is:
<em>"Although the reactions of the Calvin cycle do not depend directly on light, they do not usually occur at night. True o False"</em>
<em>
</em>The Calvin cycle is also known as the Calvin-Benson cycle or as the CO₂ fixation phase in the photosynthesis process.
The Calvin cycle generates the reactions necessary to fix the carbon in a solid structure for the formation of glucose and, in turn, regenerates the molecules for the continuation of the cycle.
The Calvin cycle is known as the dark phase of photosynthesis, or the carbon fixation phase. It is called the dark phase because this cycle is not dependent on light like other parts that make up the photosynthesis process. But it uses the energy that is produced in the light phase of photosynthesis to fix carbon.
It can be said that it consists of or forms the second stage of photosynthesis, in which the carbon of the carbon dioxide that is absorbed is fixed.
So, the statement is true because the Calvin cycle uses the energy that is produced in the light phase of photosynthesis to fix carbon.
105.9888 g/mol is the mass as far as i know, Don't know the amount of molecules tho.
mark me brainliestt :))