1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dominik [7]
3 years ago
7

At the instant under consideration, the hydraulic cylinder AB has a length L = 0.75 m, and this length is momentarily increasing

at a constant rate of 0.2 m/s. If vA = 0.6 m/s and θ = 35°, determine the velocity of slider B.

Engineering
2 answers:
Inessa [10]3 years ago
7 0

Answer:

vB = - 0.176 m/s   (↓-)

Explanation:

Given

(AB) = 0.75 m

(AB)' = 0.2 m/s

vA = 0.6 m/s

θ = 35°

vB = ?

We use the formulas

Sin θ = Sin 35° = (OA)/(AB) ⇒  (OA) = Sin 35°*(AB)

⇒   (OA) = Sin 35°*(0.75 m) = 0.43 m

Cos θ = Cos 35° = (OB)/(AB) ⇒  (OB) = Cos 35°*(AB)

⇒   (OB) = Cos 35°*(0.75 m) = 0.614 m

We apply Pythagoras' theorem as follows

(AB)² = (OA)² + (OB)²

We derive the equation

2*(AB)*(AB)' = 2*(OA)*vA + 2*(OB)*vB

⇒  (AB)*(AB)' = (OA)*vA + (OB)*vB

⇒  vB = ((AB)*(AB)' - (OA)*vA) / (OB)

then we have

⇒  vB = ((0.75 m)*(0.2 m/s) - (0.43 m)*(0.6 m/s) / (0.614 m)

⇒  vB = - 0.176 m/s   (↓-)

The pic can show the question.

Anettt [7]3 years ago
4 0

Answer:

VB = -0.1759

Explanation:

For a comprehensive step by step method check attachment, to view solution

You might be interested in
You can change lanes during a turn long as there’s no traffic and you driving slowly
Vanyuwa [196]
Your allowed to switch lanes as long as the road is clear and you use signals.
5 0
2 years ago
To produce cooling the refrigerant much
lawyer [7]
Yes that is correct good job ❤️
7 0
3 years ago
Depending on the environmental demands, there are different types of organizational structures, including __________.
Andrews [41]

Answer:

  • Functional (Centralized) Organization
  • Divisional Organization
  • Team-Based Organization
  • Product-Based Organization
  • Modular Organization
  • Matrix Organization

Explanation:

Organization structure:

refers to the idea of how people are supposed to work and coordinate in an organization to maintain a healthy and effective work environment.

There are various types of organizational structures which depends on several factors. There is no single best organization structure. Each structure has its own advantages and disadvantages. In order to select a structure the organization's vision, mission, culture values, goals are to be identified first.

6 0
3 years ago
In a voltage-divider biased pnp transistor, there is no base current, but the base voltage is approximately correct. The most li
N76 [4]

Answer:

the base-emitter junction is open and the emitter resistor is open

Explanation:

Because here there will be no base current only when the the base emitter junction is kept open and. Also when emitter resistor is kept open or with thus there will be no voltage drop across the Resistor meaning the base voltage Will be equal to that in the voltage divider circuitry

4 0
3 years ago
Air flows through a rectangular section Venturi channel . The width of the channel is 0.06 m; The height at the inlet (1) and ou
nataly862011 [7]

Answer:

a) Q = 1.3044 m^3 / s

b) h2 = 0.37 m

c) Pi = Pe = Patm = 101.325 KPa

Explanation:

Given:-

- The constant width of the rectangular channel, b = 0.06 m

- The density of air, ρa = 1.23 kg/m^3

- The density of water, ρw = 1000 kg / m^3

- The height of the channel at inlet and exit, hi = he = 0.04 m

- The height of the channel at point 2 = h2

- The height of the channel at point 3 - Throat , ht = 0.02 m

- The change height of the water in barometer at throat, ΔHt = 0.1 m

- The change height of the water in barometer at point 2, ΔH2 = 0.05 m  

- The flow rate = Q

Solution:-

- The flow rate ( Q ) of air through the venturi remains constant because the air is assumed to be incompressible i.e ( constant density ). We have steady state conditions for the flow of air.

- So from continuity equation of mass flow rate of air we have:

                         m ( flow ) = ρa*An*Vn = Constant

Where,

             Ai : The area of the channel at nth point

             Vi : The velocity of air at nth point.

- Since, the density of air remains constant throughout then we can say that flow rate ( Q ) remains constant as per continuity equation:

                        Q = m ( flow ) / ρa

Hence,

                        Q = Ai*Vi = A2*V2 = At*Vt = Ae*Ve

- We know that free jet conditions apply at the exit i.e the exit air is exposed to atmospheric pressure P_atm.

- We will apply the bernoulli's principle between the points of throat and exit.

Assuming no changes in elevation between two points and the effect of friction forces on the fluid ( air ) are negligible.

                       Pt + 0.5*ρa*Vt^2 = Pe + 0.5*ρa*Ve^2

- To determine the gauge pressure at the throat area ( Pt ) we can make use of the barometer principle.

- There is an atmospheric pressure acting on the water contained in the barometric tube ( throat area ). We see there is a rise of water by ( ΔHt ).

- The rise in water occurs due to the pressure difference i.e the pressure inside the tube ( Pt ) and the pressure acting on the water free surface i.e ( Patm ).

- The change in static pressure leads to a change in head of the fluid.

Therefore from Barometer principle, we have:

              Patm - Pt-abs = pw*g*ΔHt

              101,325 - Pt-abs = 1000*9.81*0.1

              Pt-abs = 101,325 - 981

              Pt-abs = 100,344 Pa ..... Absolute pressure

- We will convert the absolute pressure into gauge pressure by the following relation:

             Pt = Pt-abs - Patm

             Pt = 100,344 - 101,325

             Pt = -981 Pa  ... Gauge pressure  

- Now we will use the continuity equation for points of throat area and exit.

            At*Vt = Ae*Ve

            b*ht*Vt = b*he*Ve

            Ve = ( ht / he ) * Vt

            Ve = ( 0.02 / 0.04 ) * Vt

            Ve = 0.5*Vt

           

- Now substitute the pressure at throat area ( Pt ) and the exit velocity ( Ve ) into the bernoulli's equation expressed before:

            Pt + 0.5*ρa*Vt^2 = 0 + 0.5*ρa*( 0.5*Vt )^2

            -981  = 0.5*ρa*( 0.25*Vt^2 - Vt^2 )

            -981 = - 0.1875*ρa*Vt^2

            Vt^2 = 981 / ( 0.1875*1.23 )

            Vt = √4253.65853

            Vt = 65.22 m/s

- The flow rate ( Q ) of air in the venturi is as follows:

            Q = At*Vt

            Q = ( 0.02 )*( 65.22 )

            Q = 1.3044 m^3 / s   ..... Answer part a

- We will apply the bernoulli's principle between the points of throat and point 2.

Assuming no changes in elevation between two points and the effect of friction forces on the fluid ( air ) are negligible.

                       Pt + 0.5*ρa*Vt^2 = P2 + 0.5*ρa*V2^2

- To determine the gauge pressure at point 2 ( P2 ) we can make use of the barometer principle.

Therefore from Barometer principle, we have:

              Patm - P2-abs = pw*g*ΔH2

              101,325 - P2-abs = 1000*9.81*0.05

              P2-abs = 101,325 - 490.5

              Pt-abs = 100834.5 Pa ..... Absolute pressure

- We will convert the absolute pressure into gauge pressure by the following relation:

             P2 = P2-abs - Patm

             Pt = 100,344 - 100834.5

             Pt = -490.5 Pa  ... Gauge pressure            

- Now substitute the pressure at point 2 ( P2 )  bernoulli's equation expressed before:

            Pt + 0.5*ρa*Vt^2 = P2 + 0.5*ρa*( V2 )^2

            ( Pt - P2 ) + 0.5*ρa*Vt^2 = 0.5*ρa*( V2 )^2

            2*( Pt - P2 ) / ρa + Vt^2 = V2^2

            2*( -981 + 490.5 ) / 1.23 + 65.22^2 = V2^2

            -981/1.23 + 4253.6484 = V2^2

            V2 = √3456.08742

            V2 = 58.79 m/s

- The flow rate ( Q ) of air in the venturi remains constant is as follows:

            Q = A2*V2

            Q = b*h2*V2

            h2 = Q / b*V2  

            h2 = 1.3044 / ( 0.06*58.79)

            h2 = 0.37 m      ..... Answer part b

- We will apply the bernoulli's principle between the points of inlet and exit.

Assuming no changes in elevation between two points and the effect of friction forces on the fluid ( air ) are negligible.

                       Pi + 0.5*ρa*Vi^2 = Pe + 0.5*ρa*Ve^2

- Now we will use the continuity equation for points of inlet area and exit.

            Ai*Vi = Ae*Ve

            b*hi*Vi = b*he*Ve

            Vi = ( he / hi ) * Ve

            Vi = ( 0.04 / 0.04 ) * 0.5*Vt

            Vi = Ve = 0.5*Vt = 0.5*65.22 = 32.61 m/s

- Now substitute the velocity at inlet in bernoulli's equation expressed before:

            Pi + 0.5*ρa*Vi^2 = 0 + 0.5*ρa*( Ve )^2

           

Since, Vi = Ve then:

           Pi = Pe = 0 ( gauge pressure ).

           Pi = Pe = Patm = 101.325 KPa

Comment: If the viscous effects are considered then the Pressure at the inlet must be higher than the exit pressure to do work against the viscous forces to drive the fluid through the venturi assuming the conditions at every other point remains same.

8 0
3 years ago
Other questions:
  • Radioactive wastes are temporarily stored in a spherical container, the center of which is buried a distance of 10 m below the e
    6·1 answer
  • The wheel and the attached reel have a combined weight of 50lb and a radius of gyration about their center of 6 A k in = . If pu
    9·1 answer
  • 1. Which type of fit implies that a piece will never fit? a. interference fit b. construction fit c. transition fit d. impeding
    8·1 answer
  • In the designation of wrought Al alloys, eg. 3m, what does the first digit-3- refer to? A. The main alloying element B. Carbon p
    15·1 answer
  • A room is kept at −5°C by a vapor-compression refrigeration cycle with R-134a as the refrigerant. Heat is rejected to cooling wa
    7·2 answers
  • A railroad runs form city A to city B, a distance of 800km, through mountainous terrain. The present one-way travel time (includ
    13·1 answer
  • What the answer fast
    8·1 answer
  • I need help with this I dont know the word ​
    10·2 answers
  • The art of manipulating, influencing, or deceiving you into taking some action that isn’t in your best interest or in the best i
    5·1 answer
  • Engineering problems and it solutions it machine design​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!