Isotopes are basically from the same element. In terms of subatomic particles of the element, the isotopes will then basically have the same number of protons. The electrons also have to be same in number given that the elements are in neutral charges.
We are then left with neutrons, which is one of the subatomic particles residing in the nucleus of an atom.
Thus, the answer is NEUTRONS.
Assuming you meant cation and not action, gallium would most likely form a cation because it is a group A element
We are given with the mass of pure iron that reacts with oxygen to form an oxide which has a given mass as well. the mass of oxygen reacted is 8.15-6.25 g or 1.9 grams. THen we convert the mass of the reactants to moles. Iron is equal to 0.1119 moles and oxygen is equal to 0.1188. We divide each number to the less amount. Hence iron is 1 and oxygen is approx 1. The empirical formula hence is FeO or ferrous oxide or Iron (II) oxide.
2.4212 X 10^ 7
How I at least figure this problem out is I take a pencil and start on the right side of the 0 and make a loop to the left for each number and count until I get to the first two numbers that are between 1-9 when reading from left to right. This is where you put the decimal point. Some teachers rather you keep the 0's there, while others prefer one to get rid of them. Anyways with that new decimal number, you multiply the decimal by ten to what ever number you counted, which was 7.
Answer:
See explanation
Explanation:
The question is incomplete because the images of the models are absent. However, i will try to give you a general description of what the correct answer should be.
Beryllium is a member of group 2 in the periodic table. Beryllium has an atomic number of 4. This implies that it has four protons in its nucleus and four electrons in its shells. In a neutral atom, the number of electrons on the shells is equal to the number of protons in the nucleus.
The electronic configuration of Beryllium is 1s2 2s2. This implies that it should have two shells each containing only two electrons each.
Since we are using white foam balls for protons and black foam balls for neutrons, the clear plastic will contain four white foam balls and five black foam balls since the mass number of beryllium is 9 and number of neutrons = mass number - number of protons.
Four blue foam balls hanging from strings will represent the electrons around the nucleus.
Any model that corresponds to the description above is the correct answer.