Answer:

Explanation:
By definition one <em>half-life</em> is the time to reduce the initial concentration to half.
For a <em>second order reaction </em>the rate law equations are:
![\dfrac{d[B]}{dt}=-k[B]^2](https://tex.z-dn.net/?f=%5Cdfrac%7Bd%5BB%5D%7D%7Bdt%7D%3D-k%5BB%5D%5E2)
![\dfrac{1}{[B]}=\dfrac{1}{[B]_0}+kt](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B%5BB%5D%7D%3D%5Cdfrac%7B1%7D%7B%5BB%5D_0%7D%2Bkt)
The <em>half-life</em> equation is:
![t_{1/2}=\dfrac{1}{k[A]_0}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%3D%5Cdfrac%7B1%7D%7Bk%5BA%5D_0%7D)
Thus, substitute the<em> rate constant</em>
and the <em>half-life </em>time <em>224s</em> to find [A]₀:
![224s=\dfrac{1}{1.30\times10^{-3}M^{-1}\cdot s^{-1}[A]_0}](https://tex.z-dn.net/?f=224s%3D%5Cdfrac%7B1%7D%7B1.30%5Ctimes10%5E%7B-3%7DM%5E%7B-1%7D%5Ccdot%20s%5E%7B-1%7D%5BA%5D_0%7D)
![[A]_o=0.291M](https://tex.z-dn.net/?f=%5BA%5D_o%3D0.291M)
<span>Answer:
(0.150 L) x (0.0240 M Fe{3+}) x (3 mol OH{-} / 1 mol Fe{3+}) / (1.39 M NaOH) = 0.00777 L = 7.77 mL NaOH</span>
Answer: hello the complete question is attached below
Visibility of molecular ion = m/z value of 77
Explanation:
For The molecular ion to be visible, it has to be at an m/z value of 77 and this is because molecular ions will have an m/z ratio = molecular mass of given molecule in most cases but not always in all cases.
And the visibility is possible after the removal of CH₃ ion.
ii) Evidence in the mass spectrum that suggests peak at m/z = 77
attached below
Answer:
Explanation: Does any of this look right? To be honest I just looked it up.
I think It's a value that depends on another