Answer:
The difference between heat and thermal energy is that thermal energy is not in the process of being transferred; it is not in transit, but remains as part of the internal energy of the system; heat, on the other hand, is energy in transit, i.e. energy in the process of being transferred from a hotter system.
Explanation:
Answer:
1) a) I₁ = 0.2941 kg m², b) I₂ = 0.2963 kg m², c) I_{total} = 0.5904 kg m²
3) α = 6.31 10⁶ rad / s²
Explanation:
1) The moment of inertia for bodies with high symmetry is tabulated, for a divo with an axis passing through its center is
I = ½ m r²
a) moment of inertia of the upper disk
I₁ = ½ m₁ r₁²
I₁ = ½ 1,468 0.633²
I₁ = 0.2941 kg m²
b) upper aluminum disc moment of inertia
I₂ = ½ m₂ r₂²
I₂ = ½ 1.479 0.633²
I₂ = 0.2963 kg m²
c) the moment of inertia is an additive scalar quantity therefore
I_{total} = I₁ + I₂
I_{total} = 0.2941 + 0.2963
I_{total} = 0.5904 kg m²
3) ask the value of the angular acceleration, that is, the second derivative of the angle with respect to time squared
indicate the angular velocity of the system w = 400 rev / s
Let's reduce the SI system
w = 400 rev / s (2π rad / rev) = 2513.27 rad / s
as the system is rotating we can calculate the centripetal acceleration
a = w² R
a = 2513.27² 0.633
a = 3.998 10⁶ m / s²
the linear and angular variable are related
a = α r
α = a / r
α = 3.998 10⁶ / 0.633
α = 6.31 10⁶ rad / s²
Answer:
These are the two basic forms of energy. The different types of energy include thermal energy, radiant energy, chemical energy, nuclear energy, electrical energy, motion energy, sound energy, elastic energy and gravitational energy.
Explanation:
Answer:
It is called a surface wave (rayleigh wave) that transmits its energy with the wind blowing onto its surface.Hope this helps
Answer:
A) 5 m/s/s
Explanation:
<u>Given the following data;</u>
Initial velocity = 10m/s²
Final velocity = 20m/s²
Time, t = 2 seconds.
In physics, acceleration can be defined as the rate of change of the velocity of an object with respect to time.
This simply means that, acceleration is given by the subtraction of initial velocity from the final velocity all over time.
Hence, if we subtract the initial velocity from the final velocity and divide that by the time, we can calculate an object’s acceleration.
Mathematically, acceleration is given by the equation;

Substituting into the equation, we have;


<em>Acceleration, a = 5m/s²</em>