Answer: The distance is 723.4km
Explanation:
The velocity of the transverse waves is 8.9km/s
The velocity of the longitudinal wave is 5.1 km/s
The transverse one reaches 68 seconds before the longitudinal.
if the distance is X, we know that:
X/(9.8km/s) = T1
X/(5.1km/s) = T2
T2 = T1 + 68s
Where T1 and T2 are the time that each wave needs to reach the sesmograph.
We replace the third equation into the second and get:
X/(9.8km/s) = T1
X/(5.1km/s) = T1 + 68s
Now, we can replace T1 from the first equation into the second one:
X/(5.1km/s) = X/(9.8km/s) + 68s
Now we can solve it for X and find the distance.
X/(5.1km/s) - X/(9.8km/s) = 68s
X(1/(5.1km/s) - 1/(9.8km/s)) = X*0.094s/km= 68s
X = 68s/0.094s/km = 723.4 km
The correct answer is A. the magnet to become stronger
The stronger the electric current in the piece of metal, the stronger the magnetic field will be.
Answer:
A) μ = A.m²
B) z = 0.46m
Explanation:
A) Magnetic dipole moment of a coil is given by; μ = NIA
Where;
N is number of turns of coil
I is current in wire
A is area
We are given
N = 300 turns; I = 4A ; d =5cm = 0.05m
Area = πd²/4 = π(0.05)²/4 = 0.001963
So,
μ = 300 x 4 x 0.001963 = 2.36 A.m².
B) The magnetic field at a distance z along the coils perpendicular central axis is parallel to the axis and is given by;
B = (μ_o•μ)/(2π•z³)
Let's make z the subject ;
z = [(μ_o•μ)/(2π•B)] ^(⅓)
Where u_o is vacuum permiability with a value of 4π x 10^(-7) H
Also, B = 5 mT = 5 x 10^(-6) T
Thus,
z = [ (4π x 10^(-7)•2.36)/(2π•5 x 10^(-6))]^(⅓)
Solving this gives; z = 0.46m =
Answer:
A Thermal energy was converted to kinetic energy
Answer:
B) I1 = 1680 kg.m^2 I2 = 1120 kg.m^2
C) V = 0.84m/s T = 29.92s
D) ω2 = 0.315 rad/s
Explanation:
The moment of inertia when they are standing on the edge:
where M is the mass of the merry-go-round.
I1 = 1680 kg.m^2
The moment of inertia when they are standing half way to the center:

I2 = 1120 kg.m^2
The tangencial velocity is given by:
V = ω1*R = 0.84m/s
Period of rotation:
T = 2π / ω1 = 29.92s
Assuming that there is no friction and their parents are not pushing anymore, we can use conservation of the angular momentum to calculate the new angular velocity:
I1*ω1 = I2*ω2 Solving for ω2:
ω2 = I1*ω1 / I2 = 0.315 rad/s