That would be a nebula, which is an interstellar cloud of hydrogen gas, dust, and plasma. It is the first stage of a star's cycle.
<span>Maritime tropical air masses develop over warm waters present in the tropics and Gulf of Mexico, where heat and moisture are carried to to the overlying air from the water below.
</span><span>
</span><span> Tropical air masses having northward movement carry warm moist air into the United States, thus increasing the potential for condensation. Generally the southern states experience tropical air masses. But, in winter season, southerly winds ahead of migrating cyclones <span>sometimes transport tropical air mass towards north.
</span></span><span><span>
</span></span><span><span>The counterclockwise winds related to northern hemisphere mid latitude cyclones play an important role in the movement air masses, carrying warm moist air towards north ahead of a low while dragging colder and drier air towards south.</span></span>
Compute first for the vertical motion, the formula is:
y = gt²/2
0.810 m = (9.81 m/s²)(t)²/2
t = 0.4064 s
whereas the horizontal motion is computed by:
x = (vx)t
4.65 m = (vx)(0.4064 s)
4.65 m/ 0.4064s = (vx)
(vx) = 11.44 m / s
So look for the final vertical speed.
(vy) = gt
(vy) = (9.81 m/s²)(0.4064 s)
(vy) = 3.99 m/s
speed with which it hit the ground:
v = sqrt[(vx)² + (vy)²]
v = sqrt[(11.44 m/s)² + (3.99 m/s)²]
v = 12.12 m / s
Answer: 1. the object is moving away from the origin
4. the object started at 2 meters
5. the object is traveling at a constant velocity
Explanation:
I assume that the force of 20 N is applied along the direction of motion and was applied for the whole 6 meters, the formula of work is this; Work = force * distance * cosθ where θ is zero degrees. Plugging in the data to the formula; Work = 20 N * 6 m * cos 0º.
Work = 20 N * 6 m * 1
Work = 120 Nm
Work = 120 joules
Hope this helps!