The wavelength of the note is

. Since the speed of the wave is the speed of sound,

, the frequency of the note is

Then, we know that the frequency of a vibrating string is related to the tension T of the string and its length L by

where

is the linear mass density of our string.
Using the value of the tension, T=160 N, and the frequency we just found, we can calculate the length of the string, L:
The equation for percent error is
% Error =

Our experimental is 2.85g/cm^3 and the accepted is 2.7g/cm^3
Thus our % Error = 5.555%
Answer:
-
Explanation:
We are given that
Mass of cars= m=1900 kg
Initial speed of car=u=20 m/s
Final speed of car=v=0
Time=
=1.3 s
We have to find the average force exerted on the car.
Average force=



Hence, the average force exerted on the car that hits a line of water barrels=-
Values in physics that do not affect each other are considered Independent values
Answer:
Explanation:
It is a concern to managers in an organization because it is important for the organization to get the number and quality of staffs needed to attain the goals and objectives of the organization.
Selection and recruitment is also important in order to ensure the continuity of the company , it will also fulfills the organisations job requirements and also this provide a pool of employees in which the management will have to choose the right or best candidates for the job position.