Answer:
50 g of S are needed
Explanation:
To star this, we begin from the reaction:
S(s) + O₂ (g) → SO₂ (g)
If we burn 1 mol of sulfur with 1 mol of oxygen, we can produce 1 mol of sulfur dioxide. In conclussion, ratio is 1:1.
According to stoichiometry, we can determine the moles of sulfur dioxide produced.
100 g. 1mol / 64.06g = 1.56 moles
This 1.56 moles were orginated by the same amount of S, according to stoichiometry.
Let's convert the moles to mass
1.56 mol . 32.06g / mol = 50 g
Answer:
Single Displacement reaction
In a displacement reaction, a more reactive element replaces a less reactive element from a compound.
Change in colour takes place with no precipitate forms.
Metals react with the salt solution of another metal.
Examples:
2KI + Cl2 → 2KCl + I2
CuSO4 + Zn → ZnSO4 + Cu
Double displacement reaction
In a double displacement reaction, two atoms or a group of atoms switch places to form new compounds.
Precipitate is formed.
Salt solutions of two different metals react with each other.
Examples:
Na2SO4 + BaCl2 → BaSO4 + 2NaCl
2KBr + BaCl2 → 2KCl + BaBr2
Hope this helps...Please Mark as Brainliest!!
The alkali metals are first column, alkali earth 2nd, halogens 2nd to last, and noble gases last. Hope it helps!
Answer:
4.5 moles of lithium sulfate are produced.
Explanation:
Given data:
Number of moles of lead sulfate = 2.25 mol
Number of moles of lithium nitrate = 9.62 mol
Number of moles of lithium sulfate = ?
Solution:
Chemical equation:
Pb(SO₄)₂ + 4LiNO₃ → Pb(NO₃)₄ + 2Li₂SO₄
Now we will compare the moles of lithium sulfate with lead sulfate and lithium nitrate.
Pb(SO₄)₂ : Li₂SO₄
1 : 2
2.25 : 2/1×2.25 = 4.5 mol
LiNO₃ : Li₂SO₄
4 : 2
9.62 : 2/4×9.62 = 4.81 mol
Pb(SO₄)₂ produces less number of moles of Li₂SO₄ thus it will act as limiting reactant and limit the yield of Li₂SO₄.