Answer:
The architectural pattern i will use for the school management is the client-server pattern.
This pattern would consist of a server and many clients. wherein the server component would provide services to that of the clients and its components as specified and also there would be a client request service from that of the server.
Explanation:
Solution
A school management system would always involve the client server pattern as this pattern would have a server and many clients wherein the server component would give services to that of the clients and its components as specified and also there would be a client request service from that of the server. This server would share the appropriate services to such clients and also listen to the client's requests.
Such kind of pattern would mostly be used for for the online platforms or application like that of document.
Answer:
a) V = 0.354
b) G = 25.34 GPA
Explanation:
Solution:
We first determine Modulus of Elasticity and Modulus of rigidity
Elongation of rod ΔL = 1.4 mm
Normal stress, δ = P/A
Where P = Force acting on the cross-section
A = Area of the cross-section
Using Area, A = π/4 · d²
= π/4 · (0.0020)² = 3.14 × 10⁻⁴m²
δ = 50/3.14 × 10⁻⁴ = 159.155 MPA
E(long) = Δl/l = 1.4/600 = 2.33 × 10⁻³mm/mm
Modulus of Elasticity Е = δ/ε
= 159.155 × 10⁶/2.33 × 10⁻³ = 68.306 GPA
Also final diameter d(f) = 19.9837 mm
Initial diameter d(i) = 20 mm
Poisson said that V = Е(elasticity)/Е(long)
= - <u>( 19.9837 - 20 /20)</u>
2.33 × 10⁻³
= 0.354,
∴ v = 0.354
Also G = Е/2. (1+V)
= 68.306 × 10⁹/ 2.(1+ 0.354)
= 25.34 GPA
⇒ G = 25.34 GPA
Answer:
The time required is 10.078 hours or 605 min
Explanation:
The formula to apply here is ;
K=(d²-d²₀ )/t
where t is time in hours
d is grain diameter to be achieved after heating in mm
d₀ is the grain diameter before heating in mm
Given
d=5.5 × 10^-2 mm
d₀=2.4 × 10^-2 mm
t₁= 500 min = 500/60 =25/3 hrs
t₂=?
n=2.2
First find K
K=(d²-d²₀ )/t₁
K={ (5.1 × 10^-2 mm)²-(2.4 × 10−2 mm)² }/ 25/3
K=(0.051²-0.024²) ÷25/2
K=0.000243 mm²/h
Re-arrange equation for K ,to get the equation for d as;
d=√(d₀²+ Kt) where now t=t₂

Answer:
k = 4.21 * 10⁻³(L/(mol.s))
Explanation:
We know that
k = Ae
------------------- euqation (1)
K= rate constant;
A = frequency factor = 4.36 10^11 M⁻¹s⁻¹;
E = activation energy = 93.1kJ/mol;
R= ideal gas constant = 8.314 J/mol.K;
T= temperature = 332 K;
Put values in equation 1.
k = 4.36*10¹¹(M⁻¹s⁻¹)e![^{[(-93.1*10^3)(J/mol)]/[(8.314)(J/mol.K)(332K)}](https://tex.z-dn.net/?f=%5E%7B%5B%28-93.1%2A10%5E3%29%28J%2Fmol%29%5D%2F%5B%288.314%29%28J%2Fmol.K%29%28332K%29%7D)
k = 4.2154 * 10⁻³(M⁻¹s⁻¹)
here M =mol/L
k = 4.21 * 10⁻³((mol/L)⁻¹s⁻¹)
or
k = 4.21 * 10⁻³((L/mol)s⁻¹)
or
k = 4.21 * 10⁻³(L/(mol.s))