Answer:
In a parallel circuit, the voltage across each of the components is the same, and the total current is the sum of the currents flowing through each component. ... In a series circuit, every device must function for the circuit to be complete. If one bulb burns out in a series circuit, the entire circuit is broken.
Explanation:
This question is incomplete, the complete question is;
Calculate the value of ni for gallium arsenide (GaAs) at T = 300 K.
The constant B = 3.56×10¹⁴ (cm⁻³ K^-3/2) and the bandgap voltage E = 1.42eV.
Answer: the value of ni for gallium arsenide (GaAs) is 2.1837 × 10⁶ cm⁻³
Explanation:
Given that;
T = 300k
B = 3.56×10¹⁴ (cm⁻³ K^-3/2)
Eg = 1.42 eV
we know that, the value of Boltzmann constant k = 8.617×10⁻⁵ eV/K
so to find the ni for gallium arsenide;
ni = B×T^(3/2) e^ ( -Eg/2kT)
we substitute
ni = (3.56×10¹⁴)(300^3/2) e^ ( -1.42 / (2× 8.617×10⁻⁵ 300))
ni = (3.56×10¹⁴)(5196.1524)e^-27.4651
ni = (3.56×10¹⁴)(5196.1524)(1.1805×10⁻¹²)
ni = 2.1837 × 10⁶ cm⁻³
Therefore the value of ni for gallium arsenide (GaAs) is 2.1837 × 10⁶ cm⁻³
Answer:
a) the velocity of the implant immediately after impact is 20 m/s
b) the average resistance of the implant is 40000 N
Explanation:
a) The impulse momentum is:
mv1 + ∑Imp(1---->2) = mv2
According the exercise:
v1=0
∑Imp(1---->2) = F(t2-t1)
m=0.2 kg
Replacing:
if F=2 kN and t2-t1=2x10^-3 s. Replacing
b) Work and energy in the system is:
T2 - U(2----->3) = T3
where T2 and T3 are the kinetic energy and U(2----->3) is the work.
Replacing:
Your minimum selling price must be HIGHER THAN your variable costs
Answer:
<em>a) 4.51 lbf-s^2/ft</em>
<em>b) 65.8 kg</em>
<em>c) 645 N</em>
<em>d) 23.8 lb</em>
<em>e) 65.8 kg</em>
<em></em>
Explanation:
Weight of the man on Earth = 145 lb
a) Mass in slug is...
32.174 pound = 1 slug
145 pound = slug
= 145/32.174 = <em>4.51 lbf-s^2/ft</em>
b) Mass in kg is...
2.205 pounds = 1 kg
145 pounds = kg
= 145/2.205 = <em>65.8 kg</em>
c) Weight in Newton = mg
where
m is mass in kg
g is acceleration due to gravity on Earth = 9.81 m/s^2
Weight in Newton = 65.8 x 9.81 = <em>645 N</em>
d) If on the moon with acceleration due to gravity of 5.30 ft/s^2,
1 m/s^2 = 3.2808 ft/s^2
m/s^2 = 5.30 ft/s^2
= 5.30/3.2808 = 1.6155 m/s^2
weight in Newton = mg = 65.8 x 1.6155 = 106
weight in pounds = 106/4.448 = <em>23.8 lb</em>
e) The mass of the man does not change on the moon. It will therefore have the same value as his mass here on Earth
mass on the moon = <em>65.8 kg</em>