Answer:
b) False
Explanation:
Viscosity:
Viscosity is a fluid property and comes in the picture when fluid in the motion.In Simple words viscosity is the frictional force offered by fluid between the fluid layer.Viscosity provides a resistant to flow of fluid.
Generally viscosity are of two types
1.Dynamics viscosity
2.Kinematics viscosity
Generally in liquids when temperature of fluid is increases then molecular force between fluid particle goes to decreases.Due to this viscosity of liquids will decrease.
So our option b is right.
Answer:
the generator induced voltage is 60.59 kV
Explanation:
Given:
S = 150 MVA
Vline = 24 kV = 24000 V

the network voltage phase is

the power transmitted is equal to:

the line induced voltage is

A. Physical I/O sensors
Safety switches, operator inputs, travel limit switches etc
Answer:
Part 1: It would be a straight line, current will be directly proportional to the voltage.
Part 2: The current would taper off and will have negligible increase after the voltage reaches a certain value. Graph attached.
Explanation:
For the first part, voltage and current have a linear relationship as dictated by the Ohm's law.
V=I*R
where V is the voltage, I is the current, and R is the resistance. As the Voltage increase, current is bound to increase too, given that the resistance remains constant.
In the second part, resistance is not constant. As an element heats up, it consumes more current because the free sea of electrons inside are moving more rapidly, disrupting the flow of charge. So, as the voltage increase, the current does increase, but so does the resistance. Leaving less room for the current to increase. This rise in temperature is shown in the graph attached, as current tapers.
Algorithm of the Nios II assembly program.
- Attain data for simulation from the SW11-0, on the DE2-115 Simulator
- The data will be read from the switches in loop.
- The decimal output is displayed using the seven-segment displays and done using the loop.
- The program is ended by the user operating the SW1 switch
and
The decimal equivalent on the seven-segment displays HEX3-0 is
- DE2-115
- DE2-115_SW11
- DE2-115_HEX3
- DE2-115_HEX4
- DE2-115_HEX5
- DE2-115_HEX6
- DE2-115_HEX7
<h3>The Algorithm and
decimal equivalent on the
seven-segment displays HEX3-0</h3>
Generally, the program will be written using a cpulator simulator in order to attain best result.
We are to
- Attain data for simulation from the SW11-0, on the DE2-115 Simulator
- The data will be read from the switches in loop.
- The decimal output is displayed using the seven-segment displays and done using the loop.
- The program is ended by the user operating the SW1 switch
This will be the Algorithm of the Nios II assembly program .
Hence, the decimal equivalent on the seven-segment displays HEX3-0 is
- DE2-115
- DE2-115_SW11
- DE2-115_HEX3
- DE2-115_HEX4
- DE2-115_HEX5
- DE2-115_HEX6
- DE2-115_HEX7
For more information on Algorithm
brainly.com/question/11623795