Answer:
98,614.82 W/m²
Explanation:

Where;
Q = the amount of heat loss from the pipe
h = the heat transfer coefficient of the pipe = 50 W/m².K
T₁ = the ambient temperature of the pipe = 30⁰C
T₂ = the outside temperature of the pipe = 100⁰C
L= the length of pipe
r₁ = inner radius of the pipe = 20mm
r₂ = outer radius of the pipe = 25mm
To determine the amount of heat loss from the pipe per unit length
From the equation above



= 98,614.82 W/m²
Answer:
i dont know but i will take the points tho hahah
Explanation:
Answer:
Explanation:
var generator = new Random(1);
// Now the nextGaussian() function returns a normal distribution of random numbers with the following parameters: a mean of zero and a standard deviation of one
var draw = function() {
var num = generator.nextGaussian();
var standardDeviation = 60;
var mean = 2003;
// Multiply by the standard deviation and add the mean.
var x = standardDeviation * num + mean;
noStroke();
fill(214, 159, 214, 10);
ellipse(x, 200, 16, 16); };
Hope this will be helpful