Answer:
the state of the circuit is a function of the voltage level. The interpretation is up to the user.
Explanation:
A binary digital circuit adopts one of two states, depending on whether the voltage level is above or below some threshold that depends on the design of the circuit. Within each state, the voltage may have some typical range. When the voltage is near the threshold, the state of the circuit may actually be "indeterminate".
The internal/output voltage is a function of the state of the circuit. The interpretation of that voltage as a true/false or 1/0 or other meaning is up to the user of the circuit.
The circuit interprets a given input voltage as intending to convey a particular input signal state according to the circuit specifications. Input voltages near the threshold between states may cause unexpected or even destructive results.
__
In order to conserve space, some digital circuits use more than 2 different voltage levels to signify more than 2 different states.
Answer:
Absolute Pressure=315.06256 kPa
Explanation:
Gauge pressure= 31 psi
Atmospheric Pressure at Sea level= 1 atm=101.325 kPa
Answer:
14,700 J
Explanation:
PE = Mgh = (75 kg)(9.8 m/s²)(20 m) = 14,700 J
Answer:if power factor =1 is possible for that.
Explanation:when pf is unity. means 1.
Aerospace engineers design, analyze, model, simulate, and test aircraft, spacecraft, satellites, missiles, and rockets. Aerospace technology also extends to many other applications of objects moving within gases or liquids. Examples are golf balls, high-speed trains, hydrofoil ships, or tall buildings in the wind. As an aerospace engineer, you might work on the Orion space mission, which plans on putting astronauts on mars by 2020. Or, you might be involved in developing a new generation of space telescopes, the source of some of our most significant cosmological discoveries. But outer space is just one of many realms to explore as an aerospace engineer. You might develop commercial airliners, military jets, or helicopters for our airways. And getting even more down-to-earth, you could design the latest ground and sea transportation, including high-speed trains, racing cars, or deep-sea vessels that explore life at the bottom of the ocean.