False. Inertia and mass is not described in Newton’s second law of motion but in Newton’s first law of motion. Newton’s first law of motion or sometimes referred to as the law of inertia. In Newton’s first law indicates that an object at rest will remain at rest unless acted by an unbalanced force. An object in motion continues in motion with the same speed and in the same direction unless acted upon by an unbalanced force.
Mass is how heavy is it, weight is the size both are the same
Answer:
(a) 42 N
(b)36.7 N
Explanation:
Nomenclature
F= force test line (N)
W : fish weight (N)
Problem development
(a) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled in at constant speed
We apply Newton's first law of equlibrio because the system moves at constant speed:
∑Fy =0
F-W= 0
42N -W =0
W = 42N
(b) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled with an acceleration whose magnitude is 1.41 m/s²
We apply Newton's second law because the system moves at constant acceleration:
m= W/g , m= W/9.8 , m:fish mass , W: fish weight g:acceleration due to gravity
∑Fy =m*a
m= W/g , m= W/9.8 , m:fish mass , W: fish weight g:acceleration due to gravity
F-W= ( W/9.8 )*a
42-W= ( W/9.8 )*1.41
42= W+0.1439W
42=1.1439W
W= 42/1.1439
W= 36.7 N
Answer:
Wavelength is 0.5
Explanation:
To work it out, you divide Wave speed by the Frequency (24÷48=0.5)
Answer:
0.686 g of ice melts each second.
Solution:
As per the question:
Cross-sectional Area of the Copper Rod, A = 
Length of the rod, L = 19.6 cm = 0.196 m
Thermal conductivity of Copper, K = 
Conduction of heat from the rod per second is given by:

where
= temperature difference between the two ends of the rod.
Thus

Now,
To calculate the mass, M of the ice melted per sec:

where
= Latent heat of fusion of water = 333 kJ/kg
