Explanation:
When water is boiled in the flask . Some portion of it is evaporated out . Now when cork is placed on it and is placed in the ice box . It cools down , by which the pressure inside decreases .
Due to decrease of pressure , the boiling point of water also decreases . Now it can boil at lower temperature . Thus it starts boiling at lower temperature even , when placed in the ice box .
Given:
F = ax
where
x = distance by which the rubber band is stretched
a = constant
The work done in stretching the rubber band from x = 0 to x = L is
![W=\int_{0}^{L} Fdx = \int_{0}^{L}ax \, dx = \frac{a}{2} [x^{2} ]_{0}^{L} = \frac{aL^{2}}{2}](https://tex.z-dn.net/?f=W%3D%5Cint_%7B0%7D%5E%7BL%7D%20Fdx%20%3D%20%5Cint_%7B0%7D%5E%7BL%7Dax%20%5C%2C%20dx%20%3D%20%5Cfrac%7Ba%7D%7B2%7D%20%20%5Bx%5E%7B2%7D%20%5D_%7B0%7D%5E%7BL%7D%20%3D%20%20%5Cfrac%7BaL%5E%7B2%7D%7D%7B2%7D%20)
Answer:
Answer:
823.46 kgm/s
Explanation:
At 9 m above the water before he jumps, Henri LaMothe has a potential energy change, mgh which equals his kinetic energy 1/2mv² just as he reaches the surface of the water.
So, mgh = 1/2mv²
From here, his velocity just as he reaches the surface of the water is
v = √2gh
h = 9 m and g = 9.8 m/s²
v = √(2 × 9 × 9.8) m/s
v = √176.4 m/s
v₁ = 13.28 m/s
So his velocity just as he reaches the surface of the water is 13.28 m/s.
Now he dives into 32 cm = 0.32 m of water and stops so his final velocity v₂ = 0.
So, if we take the upward direction as positive, his initial momentum at the surface of the water is p₁ = -mv₁. His final momentum is p₂ = mv₂.
His momentum change or impulse, J = p₂ - p₁ = mv₂ - (-mv₁) = mv₂ + mv₁. Since m = Henri LaMothe's mass = 62 kg,
J = (62 × 0 + 62 × 13.28) kgm/s = 0 + 823.46 kgm/s = 823.46 kgm/s
So the magnitude of the impulse J of the water on him is 823.46 kgm/s
<h3><u>Answer;</u></h3>
= 2868 Newtons
<h3><u>Explanation;</u></h3>
Centripetal force is a force that acts on an object or a body in circular path and is directed towards the center of the circular path.
Centripetal force is given by the formula;
mv²/r ; where m is the mass of the body, r is the radius of the circular path and v is the velocity of a body;
mass = 65 kg, velocity = 15 m/s and r = 5.1 m
Therefore;
Centripetal force = (65 × 15²)/ 5.10
= 2867.65 Newtons
= 2868 N