To find out how many grams are in 4.65 moles of Al(NO₂)₃
Find out what the molar mass of Al(NO₂)₃ is
Al = 26.98 g/mol Al
N = 14 g/mol N
O = 16 g/mol O
Next, you have to look at the subscripts and figure out which they belong to, in this case:
Al = 26.98 g/mol Al
N₃ = 42 g/mol N₃
O₆ = 96 g/mol O₆
Finally, add the numbers together, so:
26.98 g/mol Al + 42 g/mol N₃ + 96 g/mol O₆ =
164.98 g/mol Al(NO₂)₃
Now, you have 4.65 mol Al(NO₂)₃ so
164.98 g/mol Al(NO₂)₃ × 4.65 mol Al(NO₂)₃ =
767.157 grams of Al(NO₂)₃
Answer:
<em>20 Liters</em>
Explanation:
If the pressure is supposed to be constant, one of Charles - Gay Lussac's laws can be used to solve the exercise. His statement says that "the volume of the gas is directly proportional to its temperature at constant pressure", mathematically it would be:

Considering T₁ = 50 ° C; V₁ = 10.0 L; and T₂ = 100 ° C, we can calculate the volume V₂ Clearing it from the equation and replacing the values to perform the calculation:
V2= (V1 x T2) / T1 = (10.0 L x 100°C) / 50 °C = 20 L
Therefore, <em>the gas at 100 ° C will occupy a volume of 20.0 L</em>.
The answer is (2) equal to. In redox reactions, you can't just lose electrons somewhere. If an electrons is lost by one, it must be gained by another. Hence, the importance of balancing redox reactions.
Ionic bonds are formed when one of the two atoms that are reacting has excess electrons and transfer the electrons to the atom that is deficient in electrons. During the formation of the ionic bond, one of the reacting atoms will donate electrons and form positive ion.
I literally hate chem but I think it’s ionic, I’m not not completely sure but it kinda sounds about right . Not the best anwser haha hope it kinda helps lol