Volume of Cl₂(g) is produced at 1.0 atm and 540.°C=4.5×10^4 L
As per the evenly distributed response
2NaCl (g) ----> 2Na(l)+ Cl2(g)
Calculate the amount of Cl2 that was formed as indicated below:
Moles of Cl2 = 31.0 kg of Na x (1000* 1 * 1 / 1*23* 2)
= 673.9 mol
P is equal to 1.0 atm, and T is equal to 813.15 K
when converted to Kelvin by multiplying by a factor of 273.15.
Using Cl2 as an ideal gas, determine the in the following volume:
volume = nRT/P
= 673.9 * 0.0821 * 813.15/ 1
=4.5×10^4 L
As a result, the volume of Cl2 under the given circumstances =4.5×10^4 L
Learn more about Volume here:
brainly.com/question/13338592
#SPJ4
Just choose 3
1) Lakes can form in hollows left by meteorite impacts (e.g. Clearwater Lakes, Quebec, Canada).
2) Lakes can form in the craters formed by volcanoes (e.g. Crater Lake, Oragon)
3) Lakes can form when a river is damed by a natural rock fall or man (e.g. Lake Mede)
4) Lakes can form where glaciers have scooped out the rock from the floor of a valley (e.g. Lake Geneva)
5) Lakes can form where block faulting lowers the land (e.g. lake Baikal)
6) lakes can form in natural depressions in the land (e.g. Lake Victoria)
The answer that h are looking for is c
<span>Use the sequence E (NaCl, Na2SO4, then Na2S). Silver is insoluble as a chloride, so it would be removed first, the others (Pb and Ni) are soluble as chlorides(Note; lead chloride is soluble as a hot solution but will ppt when cold), next, PbSO4 is insoluble but NiSO4 is soluble so use Na2SO4 to separate lead from nickel. Lastly, nickel sulfide is insoluble and can be separated and collected.
Hope I helped :)</span>