Answer:
Magma generated from a hot spot burned through the overlying plate to create volcanoes.
Explanation:
The Earth’s outer crust is made up of a series of tectonic plates that move over the surface of the planet. In areas where the plates come together, volcanoes will form in most cases. Volcanoes could also form in the middle of a plate, where magma rises upward until it erupts on the seafloor which is called a hot spot.
Hawaiian Islands were formed by such a hot spot occurring in the middle of the Pacific Plate. While the hot spot itself is fixed, the plate is moving. As the plate moved over the hot spot, the string of islands that make up the Hawaiian Island were formed.
Answer:
It is C and 100 percent sure about it
Answer:
terminal velocity is;
v = 117.54 m/s
v = 423.144 km/hr
Explanation:
Given the data in the question;
we know that, the force on a body due to gravity is;
= mg
where m is mass and g is acceleration due to gravity
Force of drag is;
=
pCAv²
where p is the density of fluid, C is the drag coefficient, A is the area and v is the terminal velocity.
Terminal velocity is reach when the force of gravity is equal to the force of drag.

mg =
pCAv²
we solve for v
v = √( 2mg / pCA )
so we substitute in our values
v = √( [2×(86 kg)×9.8 m/s² ] / [ 1.21 kg/m³ × 0.7 × 0.145 m²] )
v = √( 1685.6 / 0.122015 )
v = √( 13814.6949 )
v = 117.54 m/s
v = ( 117.54 m/s × 3.6 ) = 423.144 km/hr
Therefore terminal velocity is;
v = 117.54 m/s
v = 423.144 km/hr
You’ll need 4H20 molecules to balance the equation.
When the mass of the cart changes, the time to travel at 4.6 m/s is 28.11 s.
<h3>
Acceleration of the mule</h3>
The acceleration of mule is calculated as follows;
a = v/t
a = 5/10
a = 0.5 m/s²
<h3>For constant applied force</h3>
F1 = F2
m₁v₁/t₁ = m₂v₂/t₂
(180 x 5) / 10 = (550 x 4.6)/t
90 = 2530/t
t = 2530/90
t = 28.11 s
Thus, when the mass of the cart changes, the time to travel at 4.6 m/s is 28.11 s.
Learn more about acceleration here: brainly.com/question/14344386