Answer:
r2 = 1 m
therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m
Explanation:
For this exercise we must use conservation of energy
the electric potential energy is
U =
for the proton at x = -1 m
U₁ =
for the electron at x = 1 m
U₂ =
starting point.
Em₀ = K + U₁ + U₂
Em₀ =
final point
Em_f =
energy is conserved
Em₀ = Em_f
\frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e^2 (- \frac{1}{r_2 +1} + \frac{1}{r_2 -1})
\frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e²(
)
we substitute the values
½ 9.1 10⁻³¹ 450 + 9 10⁹ (1.6 10⁻¹⁹)² [
) = 9 109 (1.6 10-19) ²(
)
2.0475 10⁻²⁸ + 2.304 10⁻³⁷ (5.0125 10⁻³) = 4.608 10⁻³⁷ (
)
2.0475 10⁻²⁸ + 1.1549 10⁻³⁹ = 4.608 10⁻³⁷
r₂² -1 = (4.443 10⁸)⁻¹
r2 =
r2 = 1 m
therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m
Answer:
sum of these two vectors is 6.06i+3.5j-3.5i+6.06j = 2.56i+9.56j
Explanation:
We have given first vector which has length of 7 units and makes an angle of 30° with positive x-axis
So x component of the vector 
y component of the vector 
So vector will be 6.06i+3.5j
Now other vector of length of 7 units and makes an angle of 120° with positive x-axis
So x component of vector 
y component of the vector 
Now sum of these two vectors is 6.06i+3.5j-3.5i+6.06j = 2.56i+9.56j
Answer:
there are 7 significant figures
Explanation:
15.33879+15.555
=30.89379
there are 7 significant figures
mark me as brainliest plyyzzz
using the law of refraction, the incidence is equal to the reflection, but not refraction