Answer:
A decrease in the total volume of the reaction vessel (T constant)
Explanation:
- Le Châtelier's principle predicts that the moles of H2 in the reaction container will increase with a decrease in the total volume of the reaction vessel.
- <em><u>According to the Le Chatelier's principle, when a chnage is a applied to a system at equilibrium, then the equilibrium will shift in a way that counteracts the effect causing it.</u></em>
- In this case, a decrease in volume means there is an increase in pressure, therefore the equilibrium will shift towards the side with the fewer number of moles of gas.
Answer:
the ph of an aqueous solution of sulphuric acid which is 5*10^5 mol in concentration is basic in nature
FALSE You are never allowed to stand on the top of the ladder even if all legs are on the ground
Answer:
The relationship is expressed as follows: ![K_{a} = \frac{[H+][A-]}{[HA]}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BH%2B%5D%5BA-%5D%7D%7B%5BHA%5D%7D)
Explanation:
Most acidic substances are weak acids and are therefore only partially ionized in acqeous solution. We cab use the equilibrium constant for the ionization of acid to express the extent to which the weak acid ionizes. If we represent a general weak acid as HA, we can write the equation for its ionization reaction like this:
![K_{a} = \frac{[H+][A-]}{[HA]}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BH%2B%5D%5BA-%5D%7D%7B%5BHA%5D%7D)
To calculate the pH of a weak acid, we use the equilibrium concentration of the reacted species and product.
Take for example:
HA → H + A⁻
where A id the conjugate base.
Knowing that x amount of acid reacts, we can solve like this:
HA → H + A⁻
H+ = antilog (pH)
thus, the pH of the acid is equals to H+ (initial) - H+ (equilibrium) ≈ H+ (initial)