<h3>
Answer:</h3>
4.70 × 10²⁴ atoms Ge
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
7.80 mol Ge
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
= 4.69716 × 10²⁴ atoms Ge
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
4.69716 × 10²⁴ atoms Ge ≈ 4.70 × 10²⁴ atoms Ge
(っ^-^ )っHey There!
Answer → The five steps of the process of natural selection are variation, inheritance, selection, time and adaptation
✨Hope this Helps✨
A cylindrical weight with a mass of 3 kg is dropped onto the piston from a height of 10 m. The entropy of the gas is 1.18 J/K and the change in the entropy of the environment is -1.18 J/K.
A cylindrical weight with a mass (m) of 3 kg is dropped, that is, its initial velocity (u) is 0 m/s and travels 10 m (s). Assuming the acceleration (a) is that of gravity (9.8 m/s²). We can calculate the velocity (v) of the weight in the instant prior to the collision with the piston using the following kinematic equation.

The object with a mass of 3 kg collides with the piston at 14 m/s, The kinetic energy (K) of the object at that moment is:

The kinetic energy of the weight is completely converted into heat transferred into the gas cylinder. Thus, Q = 294 J.
Given all the process is at 250 K (T), we can calculate the change of entropy of the gas using the following expression.

The change in the entropy of the environment, has the same value but opposite sign than the change in the entropy of the gas. Thus, 
A cylindrical weight with a mass of 3 kg is dropped onto the piston from a height of 10 m. The entropy of the gas is 1.18 J/K and the change in the entropy of the environment is -1.18 J/K.
Learn more: brainly.com/question/22655760
If 40.0 grams of magnesium is reacted with an excess of nitric acid. 3.3 g of hydrogen gas will be produced.
<h3>What is Stoichiometry ?</h3>
Stoichiometry helps us use the balanced chemical equation to measure quantitative relationships and it is to calculate the amounts of products and reactants that are given in a reaction.
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
Now we have to write the balanced equation
Mg + 2HNO₃ → Mg(NO₃)₂ + H₂
According to Stoichiometry

= 3.3 g H₂
Thus from the above conclusion we can say that If 40.0 grams of magnesium is reacted with an excess of nitric acid. 3.3 g of hydrogen gas will be produced.
Learn more about the Stoichiometry here: brainly.com/question/16060223
#SPJ1