Answer:
Rate of formation of SO₃
= 7.28 x 10⁻³ M/s
Explanation:
According to equation 2 SO₂(g) + O₂(g) → 2 SO₃(g)
Rate of disappearance of reactants = rate of appearance of products
⇒
-----------------------------(1)
Given that the rate of disappearance of oxygen =
= 3.64 x 10⁻³ M/s
So the rate of formation of SO₃
= ?
from equation (1) we can write
![\frac{d[SO_{3}] }{dt} = 2 [-\frac{d[O_{2}] }{dt} ]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BSO_%7B3%7D%5D%20%7D%7Bdt%7D%20%3D%202%20%5B-%5Cfrac%7Bd%5BO_%7B2%7D%5D%20%7D%7Bdt%7D%20%5D)
⇒
= 2 x 3.64 x 10⁻³ M/s
⇒
= 7.28 x 10⁻³ M/s
∴ So the rate of formation of SO₃
= 7.28 x 10⁻³ M/s
Answer:
Explanation:
<u>1) Rate law, at a given temperature:</u>
- Since all the data are obtained at the same temperature, the equilibrium constant is the same.
- Since only reactants A and B participate in the reaction, you assume that the form of the rate law is:
r = K [A]ᵃ [B]ᵇ
<u>2) Use the data from the table</u>
- Since the first and second set of data have the same concentration of the reactant A, you can use them to find the exponent b:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₂ = (1.50)ᵃ (2.50)ᵇ = 2.50 × 10⁻¹ M/s
Divide r₂ by r₁: [ 2.50 / 1.50] ᵇ = 1 ⇒ b = 0
- Use the first and second set of data to find the exponent a:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₃ = (3.00)ᵃ (1.50)ᵇ = 5.00 × 10⁻¹ M/s
Divide r₃ by r₂: [3.00 / 1.50]ᵃ = [5.00 / 2.50]
2ᵃ = 2 ⇒ a = 1
<u>3) Write the rate law</u>
This means, that the rate is independent of reactant B and is of first order respect reactant A.
<u>4) Use any set of data to find K</u>
With the first set of data
- r = K (1.50 M) = 2.50 × 10⁻¹ M/s ⇒ K = 0.250 M/s / 1.50 M = 0.167 s⁻¹
Result: the rate constant is K = 0.167 s⁻¹
Answer:
Pb(C2H3O2)2 + KI ----> PbI2 + KC2H3O2
Explanation:
all the numbers are written as subscripts
Answer:
Measure the pH of different household chemicals
Explanation:
To demonstrate a chemical property using an experiment, measuring the pH of different household chemicals will be the best way. The pH is the degree of hydrogen or hydroxyl ion concentration in a solution.
Chemical properties tell us about what a substance can do.
It shows if a substance will react with other substances or not.
Examples are flammability, rusting of iron, precipitation, decomposition of water by electric current e.t.c.
Measuring the pH is a chemical property determination procedure.
The pH points to the degree of acidity or alkalinity of a solution.
Answer:
8.61 mL of the HCl solution
Explanation:
The reaction that takes place is:
- 2HCl + Mg(OH)₂ → MgCl₂ + 2H₂O
From the given mass of Mg(OH)₂, we can calculate <u>the moles of HCl that are neutralized</u>:
- 4x10² mg = 400 mg = 0.400g
- 0.400g Mg(OH)₂ ÷ 58.32g/1mol = 6.859*10⁻³ mol Mg(OH)₂
- 6.859*10⁻³ mol Mg(OH)₂ *
3.429x10⁻³ mol HCl
Finally, to calculate the volume of an HCl solution, we need both the moles and the concentration. We can <u>calculate the concentration using the pH value</u>:
= [H⁺]
- 0.0398 M = [H⁺] = [HCl] *Because HCl is a strong acid*
Thus, the volume is:
- 0.0398 M = 3.429x10⁻³mol HCl / Volume
- Volume = 8.616x10⁻³ L = 8.62 mL