Answer: 600 kJ
-
Explanation:
C₃H₈ (g) + 5 O₂ (g) =============== 3 CO₂ (g) + 4 H₂O (l)
Δ⁰Hf kJ/mol -104 0 -393.5 -285.8
Δ⁰Hcomb C₃H₈ = 3(-393.5) + 4 (-285.80) - (-104) kJ/mol
Δ⁰Hcomb = 2219.70 kJ/mol
n= m /MW MW c₃H₈ = 44.1 g/mol
n= 12 g/44.1 g/mol = 0.27 mol
then for 12 g the heat released will be
0.27 mol x 2219.70 kJ/mol = 600 KJ
55.9 kPa; Variables given = volume (V), moles (n), temperature (T)
We must calculate <em>p</em> from <em>V, n</em>, and <em>T</em>, so we use <em>the Ideal Gas Law</em>:
<em>pV = nRT</em>
Solve for <em>p</em>: <em>p = nRT/V</em>
R = 8.314 kPa.L.K^(-1).mol^(-1)
<em>T</em> = (265 + 273.15) K = 538.15 K
<em>V</em> = 500.0 mL = 0.5000 L
∴ <em>p</em> = [6.25 x 10^(-3) mol x 8.314 kPa·L·K^(-1)·mol^(-1) x 538.15 K]/(0.5000 L) = 55.9 kPa
Sulfur trioxide (SO3) is a chemical compound that is a significant pollutant in gaseous form as it is involved in the production of acid rain.
Industrially, sulfur trioxide is an important precursor to sulfuric acid and is formed from the reaction between sulfur dioxide (SO2) and oxygen gas (O2) as shown in the chemical equation below.
Answer:
1.7x10^8 Hz
Explanation:
Frequency could be explained as the number of occurrences of a repeating event at a time
Given:
wavelength = 1.8 meters
The frequency f of the waves can be calculated using f = c / λ
Where c (m/s) is the speed of the wave
λ (m) is the wavelength
Speed c= 3*10^8 m/s
Frequency f= 3*10^8 /1.8
Frequency= 1.7x10^8 Hz
Therefore,the frequency of waves from a radar detector is 1.7x10^8 Hz