Answer:
The equilibrium constant for the reversible reaction = 0.0164
Explanation:
At equilibrium the rate of forward reaction is equal to the rate of backwards reaction.
The reaction is given as
A ⇌ B
Rate of forward reaction is first order in [A] and the rate of backward reaction is also first order in [B]
The rate of forward reaction = |r₁| = k₁ [A]
The rate of backward reaction = |r₂| = k₂ [B]
(Taking only the magnitudes)
where k₁ and k₂ are the forward and backward rate constants respectively.
k₁ = 0.010 s⁻¹
k₂ = 0.0610 s⁻¹
|r₁| = 0.010 [A]
|r₂| = 0.016 [B]
At equilibrium, the rate of forward and backward reactions are equal
|r₁| = |r₂|
k₁ [A] = k₂ [B] (eqn 1)
Note that equilibrium constant, K, is given as
K = [B]/[A]
So, from eqn 1
k₁ [A] = k₂ [B]
[B]/[A] = (k₁/k₂) = (0.01/0.0610) = 0.0163934426 = 0.0164
K = [B]/[A] = (k₁/k₂) = 0.0164
Hope this Helps!!!
C) moisture, falling air, and a lifting mechanism
~Hello there!
Your question: <span>Solution and hydrolysis combine to create ________ in streams.
Your answer: </span><span>Solution and hydrolysis combine to create corrosion in streams.
Hope this helps! :3
</span>
<u>Answer:</u> The Gibbs free energy of the reaction is 21.32 kJ/mol
<u>Explanation:</u>
The chemical equation follows:

The equation used to Gibbs free energy of the reaction follows:

where,
= free energy of the reaction
= standard Gibbs free energy = 29.7 kJ/mol = 29700 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314J/K mol
T = Temperature = ![37^oC=[273+37]K=310K](https://tex.z-dn.net/?f=37%5EoC%3D%5B273%2B37%5DK%3D310K)
= Ratio of concentration of products and reactants = ![\frac{\text{[Oxaloacetate]}[NADH]}{\text{[Malate]}[NAD^+]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctext%7B%5BOxaloacetate%5D%7D%5BNADH%5D%7D%7B%5Ctext%7B%5BMalate%5D%7D%5BNAD%5E%2B%5D%7D)
![\text{[Oxaloacetate]}=0.130mM](https://tex.z-dn.net/?f=%5Ctext%7B%5BOxaloacetate%5D%7D%3D0.130mM)
![[NADH]=2.0\times 10^2mM](https://tex.z-dn.net/?f=%5BNADH%5D%3D2.0%5Ctimes%2010%5E2mM)
![\text{[Malate]}=1.37mM](https://tex.z-dn.net/?f=%5Ctext%7B%5BMalate%5D%7D%3D1.37mM)
![[NAD^+]=490mM](https://tex.z-dn.net/?f=%5BNAD%5E%2B%5D%3D490mM)
Putting values in above expression, we get:

Hence, the Gibbs free energy of the reaction is 21.32 kJ/mol