Answer:
One complete revolution around a circular path.
Explanation:
Let us take the case of a car moving in a circular track of radius r metres.
In one revolution, the car covers the length(distance) equal to the perimeter of the circle.
In this case, distance traveled = 2
r metres
But after one complete revolution, the car reaches the same position as it was at the beginning of the motion.
Hence, the initial and final points coincide or the car hasn't changed it's position w.r.t the initial point.
So in this case, the displacement is zero.
Hence, revolution of a car around a circular path is an example of an object traveling a distance but having no displacement.
Answer:
3 e⁻ transfer has occurred.
Explanation
This is a redox reaction.
- Oxidation (loss of electrons or increase in the oxidation state of entity)
- Reduction (gain of electrons or decrease in the oxidation state of the entity)
- An element undergoes oxidation or reduction in order to achieve a stable configuration. It can be an octet or duplet configuration. An octet configuration is that of outer shell configuration of noble gas.
- [Ne]= (1s²) (2s² 2p⁶)
A combination of both the reactions( Half-reactions) leads to a redox reaction.
Let us look at initial configurations of Al and Cl
[Al]= 1s² 2s² 2p⁶ 3s² 3p¹
[Cl]= 1s² 2s² 2p⁶ 3s² 3p⁵
Hence, Al can lose 3 electrons to achieve octet config.
and, Cl can gain 1e to achieve nearest noble gas config. [Ar]
This reaction can be rewritten, by clearly mentioning the oxidation states of all the entities involved.
Al⁰ + Cl⁰ → (Al⁺³)(Cl⁻)₃
Here, Aluminum is undergoing an oxidation(i.e loss of electrons) from: 0→(+3)
Chlorine undergoes a reduction half reaction (i.e gain of electrons) from: 0→(-1). There are 3 such chlorine atoms, hence 3 e⁻ transfer has occurred.
Answer:
F
Explanation:
A carousel can be made to rotate using different sources of energy. One may decide to use electric energy, manual effort, water energy or heat energy as in a candle carousel.
When the candle is lit, heat energy is supplied and warm air rises heating up the air near the carousel eventually causing it to start rotating.
Hence heat from the candle leads to a current of warm air that rises up, causing the carousel to start rotating.