From the balanced equation 2KClO3 → 2KCl + 3O2, the coefficients are the following:
coefficient 2 in front of potassium chlorate KClO3
coefficient 2 in front of potassium chloride KCl
coefficient 3 in front of oxygen molecule O2
We got this balanced equation by identifying the number of atoms of each element that we have in the given equation KClO3 → KCl + O2.
Looking at the subscripts of each atom on the reactant side and on the product side, we have
KClO3 → KCl + O2
K=1 K=1
Cl=1 Cl=1
O=3 O=2
We can see that the oxygens are not balanced. We add a coefficient 2 to the 3 oxygen atoms on the left side and another coefficient 3 to the 2 oxygen
atoms on the right side to balance the oxygens:
2KClO3 → KCl + 3O2
The coefficient 2 in front of potassium chlorate KClO3 multiplied by the subscript 3 of the oxygen atoms on the left side indicates 6 oxygen atoms just as the coefficient 3 multiplied by the subscript 2 on the right side indicates 6 oxygen atoms.
The number of potassium K atoms and chloride Cl atoms have changed as well:
2KClO3 → KCl + 3O2
K=2 K=1
Cl=2 Cl=1
O=6 O=6
We now have two potassium K atoms and two chloride Cl atoms on the reactant side, so we add a coefficient 2 to the potassium chloride KCl on the product side:
2KClO3 → 2KCl + 3O2, which is our final balanced equation.
K=2 K=2
Cl=2 Cl=2
O=6 O=6
The potassium, chlorine, and oxygen atoms are now balanced.
Answer:
The method of hurrying up a reaction by decreasing its activation energy is called as catalysis, and the circumstance that's added to reduce the activation energy is termed as the catalyst.
Explanation:
Organic catalysts are named as enzymes. Enzymes are protein particles in cells which act as catalysts. Enzymes are proteid particles in groups which act as catalysts. Enzymes rush up biochemical effects in the thing but do not become used up in the method. Nearly all biochemical effects in living things require enzymes. Among an enzyme, biochemical effects go extremely quicker than they would without the enzyme.
You can detect salt in water without tasting by measuring the density of the water. Place a glass of spring water and a glass of the suspected salt water on a balance scale and the heavier one contains salt. Other ways to test for salt in water is to put a drop of water on the end of a nail and place in a gas flame. If the water contains salt, the flame will turn a yellow/orange color.
Answer:
36.66%
Explanation:
Step 1: Given data
- Mass of the sample: 2.875 g
Step 2: Calculate the mass of salt
The mass of the sample is equal to the sum of the masses of the components.
m(sample) = m(iron) + m(sand) + m(salt)
m(salt) = m(sample) - m(iron) - m(sand)
m(salt) = 2.875 g - 0.660 g - 1.161 g
m(salt) = 1.054 g
Step 3: Calculate the percent of salt in the sample
We will use the following expression.
%(salt) = m(salt) / m(sample) × 100%
%(salt) = 1.054 g / 2.875 g × 100% = 36.66%
The people cut down the trees