Answer:
C
Explanation:
i could be wrong but it seems the most logical
Answer:Mass of the body = 20 kg.
Final Velocity = 5.8 m/s.
Initial velocity = 0
Time = 3 seconds.
Using the Formula,
Acceleration = (v - u)/ t
= (5.8 - 0)/ 3
= 1.6 m /s².
Now, Using the Formula,
Force = mass × acceleration
= 20 × 1.6
=
Explanation: I REALLY HOPE THIS HELPS I'M KINDA NEW AT THIS :] :]
The final velocity is 2.7 m/s
Explanation:
We can solve this problem by using the principle of conservation of momentum: in fact, in absence of external forces, the total momentum of the system must be conserved before and after the collision.
Therefore we can write:
where:
is the mass of the putty
is the initial velocity of the putty (we take its direction as positive direction)
is the mass of the ball
is the initial velocity of the ball (at rest)
is the final combined velocity of the two putty+ball
Re-arranging the equation and substituting the values, we find the final combined velocity:
And the positive sign indicates their final direction is the same as the initial direction of the putty.
Learn more about momentum here:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Answer:
Density (φ) = 0,8827 Kg/L
Specific weight (Ws) = 8,65 N/L
Specific gravity (Gs) = 0,8827 (without unit)
Explanation:
The density formula: φ =
I know the mass "m", I need to find out the volume of the cylinder (V)
V = π* r²*h
The radius "r" is equal to half the diameter (150mm) = 75mm
Now I can find out the density (φ)
φ =
= 0,8827 Kg/L
The specific weight (Ws) is the relationship between the weight of substance (oil) and its volume. We apply the following formula:
Ws = φ*g
(g = gravity = 9,8 m/s²)
Finally, specific gravity (Gs) is the ratio between the density of a substance (oil) "φ(o)" and the density of water "φ(w)" :
Gs = φ(o) / φ(w)
(φ(w) = 1 Kg/L
Hope this can help you !!
Answer:
λ = 5.656 x 10⁻⁷ m = 565.6 nm
Explanation:
Using the formula of fringe spacing from the Young's Double Slit experiment, which is given as follows:

where,
λ = wavelength = ?
Δx = fringe spacing = 1.6 cm = 0.016 m
L = Distance between slits and screen = 4.95 m
d = slit separation = 0.175 mm = 0.000175 m
Therefore,

<u>λ = 5.656 x 10⁻⁷ m = 565.6 nm</u>