It is colorless and oderless is a physical property by telling what color.
Boiling is the rapid vaporization of a liquid, which occurs when a liquid is heated to its boiling point, the temperature at which the vapour pressure of the liquid is equal to the pressure exerted on the liquid by the surrounding atmosphere. There are two main types of boiling; nucleate boiling where small bubbles of vapour form at discrete points, and critical heat flux boiling where the boiling surface is heated above a certain critical temperature and a film of vapor forms on the surface. Transition boiling is an intermediate, unstable form of boiling with elements of both types. The boiling point of water is 100 °C or 212 °F, but is lower with the decreased atmospheric pressure found at higher altitudes.
Boiling water is used as a method of making it potable by killing microbes that may be present. The sensitivity of different micro-organisms to heat varies, but if water is held at 70 °C (158 °F) for ten minutes, many organisms are killed, but some are more resistant to heat and require one minute at the boiling point of water. Clostridium spores can survive this treatment, but as the infection caused by this microbe is not water-borne, this is not a problem.
Boiling is also used in cooking. Foods suitable for boiling include vegetables, starchy foods such as rice, noodles and potatoes, eggs, meats, sauces, stocks and soups. As a cooking method it is simple and suitable for large scale cookery. Tough meats or poultry can be given a long, slow cooking and a nutritious stock is produced. Disadvantages include loss of water-soluble vitamins and minerals. Commercially prepared foodstuffs are sometimes packed in polythene sachets and sold as "boil-in-the-bag" products.
Answer:
The IUPAC name of given compound is 3−5−ethyl−5−−3−methylheptane. Explanation: The parental chain is of 7 carbons with single bonds hence it is heptane. Two substituents ethyl and methyl group are attached from an equal distance. Hence according to the alphabetical order preference, counting starts from carbon which is close to an ethyl group.
Again great job! They all look correct except 20. is 3.7 due to sig fig of least precision, which you have a mark by!! You don't even need help!;) Here comes the next chemical engineer! :)
Since you have not included the chemical reaction I will explain you in detail.
1) To determine the limiting agent you need two things:
- the balanced chemical equation
- the amount of every reactant involved as per the chemical equation
2) The work is:
- state the mole ratios of all the reactants: these are the ratios of the coefficientes of the reactans in the balanced chemical equation.
- determine the number of moles of each reactant with this formula:
number of moles = (mass in grams) / (molar mass)
- set the proportion with the two ratios (theoretical moles and actual moles)
- compare which reactant is below than the stated by the theoretical ratio.
3) Example: determine the limiting agent in this reaction if there are 100 grams of each reactant:
i) Chemical equation: H₂ + O₂ → H₂O
ii) Balanced chemical equation: 2H₂ + O₂ → 2H₂O
iii) Theoretical mole ration of the reactants: 2 moles H₂ : 1 mol O₂
iv) Covert 100 g of H₂ into number of moles
n = 100g / 2g/mol = 50 mol of H₂
v) Convert 100 g of O₂ to moles:
n = 100 g / 32 g/mol = 3.125 mol
vi) Actual ratio: 50 mol H₂ / 3.125 mol O₂
vii) Compare the two ratios:
2 mol H₂ / 1 mol O ₂ < 50 mol H₂ / 3.125 mol O₂
Conclusion: the actual ratio of H₂ to O₂ is greater than the theoretical ratio, meaning that the H₂ is in excess respect to the O₂. And that means that O₂ will be consumed completely while some H₂ will remain without react.
Therefore, the O₂ is the limiting reactant in this example.