placing a magnetically hard material in a strong magnetic field
Ok, assuming "mj" in the question is Megajoules MJ) you need a total amount of rotational kinetic energy in the fly wheel at the beginning of the trip that equals
(2.4e6 J/km)x(300 km)=7.2e8 J
The expression for rotational kinetic energy is
E = (1/2)Iω²
where I is the moment of inertia of the fly wheel and ω is the angular velocity.
So this comes down to finding the value of I that gives the required energy. We know the mass is 101kg. The formula for a solid cylinder's moment of inertia is
I = (1/2)mR²
We want (1/2)Iω² = 7.2e8 J and we know ω is limited to 470 revs/sec. However, ω must be in radians per second so multiply it by 2π to get
ω = 2953.1 rad/s
Now let's use this to solve the energy equation, E = (1/2)Iω², for I:
I = 2(7.2e8 J)/(2953.1 rad/s)² = 165.12 kg·m²
Now find the radius R,
165.12 kg·m² = (1/2)(101)R²,
√(2·165/101) = 1.807m
R = 1.807m
Energy I believe. If there is no energy given or taken the object will not react.
Mechanical advantage is the amount by which a machine multiplies input force. It is a measure of the force amplification using a tool or machine system.
Answer:
Explanation:
5p - 14 = 8p + 4
5p = 8p + 18 <-- Moving constants to one side; add the same number of +14 to both sides.
-3p = 18. <-- The same thing with the variable itself.
p = -6 <-- Divide both sides by negative 3.