Precisely 84% if the Earth is made of mantle.
Answers:
1) 
2) 
Explanation:
1) Acceleration
is defined as the variation of Velocity
in time
:
(1)
A body also has acceleration when it changes its direction.
In this case we have a bus with a velocity of 60m/s to the east, that accelerates in a time 10s. So, we have to find the bus's acceleration:
(2)
(3) This is the bus's accelerration
2) Now we have a car that accelerates
to the west in order to reach a speed of
in the same direction, and we have to find the time
it takes to the car to reach that velocity.
Therefore we have to find
from (1):
(4)
(5)
Finally:
(6)
Answer:
can you translate that plz
Explanation:
Answer: B) 2.5 m/s
Explanation: Find the average of the time and distance, and see how far they go in only 1 second.
1 + 2 + 3 + 4 + 5 = 15
15 divided by 5 = 3
3 seconds
2 + 5 + 7 + 10 + 12 = 36
36 divided by 5 = 7.2
7.2m per 3 seconds.
7.2 divided by 3 = 2.4
Therefore, the answer is technically 2.4m/s
A pendulum is not a wave.
-- A pendulum doesn't have a 'wavelength'.
-- There's no way to define how many of its "waves" pass a point
every second.
-- Whatever you say is the speed of the pendulum, that speed
can only be true at one or two points in the pendulum's swing,
and it's different everywhere else in the swing.
-- The frequency of a pendulum depends only on the length
of the string from which it hangs.
If you take the given information and try to apply wave motion to it:
Wave speed = (wavelength) x (frequency)
Frequency = (speed) / (wavelength) ,
you would end up with
Frequency = (30 meter/sec) / (0.35 meter) = 85.7 Hz
Have you ever seen anything that could be described as
a pendulum, swinging or even wiggling back and forth
85 times every second ? ! ? That's pretty absurd.
This math is not applicable to the pendulum.