Answer:
(b) 56%
Explanation:
the maximum thermal efficiency is possible only when power cycle is reversible in nature and when power cycle is reversible in nature the thermal efficiency depends on the temperature
here we have given T₁ (Higher temperature)= 600+273=873
lower temperature T₂=110+273=383
Efficiency of power cycle is given by =1-
=1-
=1-0.43871
=.56
=56%
This question is incomplete, the complete question is;
For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration at Temperature T1 will raise the carbon concentration to 0.44 wt% at a point 1.8 mm from the surface. A separate experiment is performed at T2 that doubles the diffusion coefficient for carbon in steel.
Estimate the time necessary to achieve the same concentration at a 4.9 mm position for an identical steel and at the same carburizing temperature T2.
Answer:
the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Explanation:
Given the data in the question;
treatment time t₁ = 11.3 hours
Carbon concentration = 0.444 wt%
thickness at surface x₁ = 1.8 mm = 0.0018 m
thickness at identical steel x₂ = 4.9 mm = 0.0049 m
Now, Using Fick's second law inform of diffusion
/ Dt = constant
where D is constant
then
/ t = constant
/ t₁ =
/ t₂
t₂ = t₁
t₂ = t₁
/ 
t₂ = (
/
)t₁
t₂ =
/
× t₁
so we substitute
t₂ =
0.0049 / 0.0018
× 11.3 hrs
t₂ = 7.41 × 11.3 hrs
t₂ = 83.733 hrs
Therefore, the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Answer: 
Explanation:
Given
Discharge is 
Diameter of pipe 
Distance between two ends of pipe 
friction factor 
Average velocity is given by

Pressure difference is given by

Answer:
b
Explanation:
only if there signal is turned on
Answer:
simple projects bovonhztisgx