1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
padilas [110]
3 years ago
14

Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit

and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie. What else did he wear?
Engineering
1 answer:
vazorg [7]3 years ago
4 0

Answer:

He wore his black suit, another color of shirt (not purple) and shoes

Explanation:

Holmes owns two suits: one black and one tweed.

Whenever he wears his tweed suit and a purple shirt, he chooses not to wear a tie and whenever he wears sandals, he always wears a purple shirt.

So, if he wore a bow tie yesterday, it means he wore his black suit, another color of shirt (not purple) and shoes because the shirt color is not purple

You might be interested in
A full-adder is a combinational circuit that forms the arithmetic sum of three input bits.
Vinvika [58]
(b) correct it is false
5 0
3 years ago
Interpret the assembly program below: MOV R3,R0;
Reika [66]

Answer:

Explanation:

1.  With the operands R0, R1, the program would compute AND operation and ADD operation .

2. The operands could truly be signed 2's complement encoded (i.e Yes) .

3. The overflow truly occurs when two numbers that are unsigned were added and the result is larger than the capacity of the register, in that situation, overflow would occur and it could corrupt the data.

 When the result of an operation is smaller in magnitude than the smallest value represented by the data type, then arithmetic underflow will occur.

7 0
3 years ago
Identify and describe the three stages of a life cycle analysis.
sesenic [268]
The LCA process is a systematic, phased approach and consists of four components: goal definition and scoping, inventory analysis, impact assessment, and interpretation. The standards are provided by the International Organisation for Standardisation (ISO) in ISO 14040 and 14044, and describe the four main phases of an LCA: Goal and scope definition. Inventory analysis. Impact assessment.

Hope this is helpful
5 0
3 years ago
Assume a program requires the execution of 50 x 106 FP instructions, 110 x 106 INT instructions, 80 x 106 L/S instructions, and
Pavlova-9 [17]

Answer:

Part A:

1.3568*10^{-5}=\frac{5300* New\  CPI_1+11660*1+8480*4+1696*2}{2*10^9\ Hz} \\ New\ CPI_1=-4.12

CPI cannot be negative so it is not possible to for program to run two times faster.

Part B:

1.3568*10^{-5}=\frac{5300*1+11660*1+8480*New\ CPI_3+1696*2}{2*10^9\ Hz} \\ New\ CPI_3=0.8

CPI reduced by 1-\frac{0.8}{4} = 0.80=80%

Part C:

New Execution Time=\frac{5300*0.6+11660*0.6+8480*2.8+1696*1.4}{2*10^9\ Hz}=1.81472*10^{-5}\ s

Increase in speed=1-\frac{1.81472*10^{-5}}{2.7136*10^{-5}} =0.33125= 33.125\%

Explanation:

FP Instructions=50*106=5300

INT  Instructions=110*106=11660

L/S  Instructions=80*106=8480

Branch  Instructions=16*106=1696

Calculating Execution Time:

Execution Time=\frac{\sum^4_{i=1} Number\ of\ Instruction*\ CPI_{i}}{Clock\ Rate}

Execution Time=\frac{5300*1+11660*1+8480*4+1696*2}{2*10^9\ Hz}

Execution Time=2.7136*10^{-5}\ s

Part A:

For Program to run two times faster,Execution Time (Calculated above) is reduced to half.

New Execution Time=\frac{2.7136*10^{-5}}{2}=1.3568*10^{-5}\ s

1.3568*10^{-5}=\frac{5300* New\  CPI_1+11660*1+8480*4+1696*2}{2*10^9\ Hz} \\ New\ CPI_1=-4.12

CPI cannot be negative so it is not possible to for program to run two times faster.

Part B:

For Program to run two times faster,Execution Time (Calculated above) is reduced to half.

New Execution Time=\frac{2.7136*10^{-5}}{2}=1.3568*10^{-5}\ s

1.3568*10^{-5}=\frac{5300*1+11660*1+8480*New\ CPI_3+1696*2}{2*10^9\ Hz} \\ New\ CPI_3=0.8

CPI reduced by 1-\frac{0.8}{4} = 0.80=80%

Part C:

New\ CPI_1=0.6*Old\ CPI_1=0.6*1=0.6\\New\ CPI_2=0.6*Old\ CPI_2=0.6*1=0.6\\New\ CPI_3=0.7*Old\ CPI_3=0.7*4=2.8\\New\ CPI_4=0.7*Old\ CPI_4=0.7*2=1.4

New Execution Time=\frac{\sum^4_{i=1} Number\ of\ Instruction*\ CPI_{i}}{Clock\ Rate}

New Execution Time=\frac{5300*0.6+11660*0.6+8480*2.8+1696*1.4}{2*10^9\ Hz}=1.81472*10^{-5}\ s

Increase in speed=1-\frac{1.81472*10^{-5}}{2.7136*10^{-5}} =0.33125= 33.125\%

8 0
3 years ago
In 1945, the United States tested the world’s first atomic bomb in what was called the Trinity test. Following the test, images
Zarrin [17]

Answer:

r=K A^{1/5} \rho^{-1/5} t^{2/5}

A= \frac{r^5 \rho}{t^2}

A=1.033x10^{21} ergs *\frac{Kg TNT}{4x10^{10} erg}=2.58x10^{10} Kg TNT

Explanation:

Notation

In order to do the dimensional analysis we need to take in count that we need to conditions:

a) The energy A is released in a small place

b) The shock follows a spherical pattern

We can assume that the size of the explosion r is a function of the time t, and depends of A (energy), the time (t) and the density of the air is constant \rho_{air}.

And now we can solve the dimensional problem. We assume that L is for the distance T for the time and M for the mass.

[r]=L with r representing the radius

[A]= \frac{ML^2}{T^2} A represent the energy and is defined as the mass times the velocity square, and the velocity is defined as \frac{L}{T}

[t]=T represent the time

[\rho]=\frac{M}{L^3} represent the density.

Solution to the problem 

And if we analyze the function for r we got this:

[r]=L=[A]^x [\rho]^y [t]^z

And if we replpace the formulas for each on we got:

[r]=L =(\frac{ML^2}{T^2})^x (\frac{M}{L^3})^y (T)^z

And using algebra properties we can express this like that:

[r]=L=M^{x+y} L^{2x-3y} T^{-2x+z}

And on this case we can use the exponents to solve the values of x, y and z. We have the following system.

x+y =0 , 2x-3y=1, -2x+z=0

We can solve for x like this x=-y and replacing into quation 2 we got:

2(-y)-3y = 1

-5y = 1

y= -\frac{1}{5}

And then we can solve for x and we got:

x = -y = -(-\frac{1}{5})=\frac{1}{5}

And if we solve for z we got:

z=2x =2 \frac{1}{5}=\frac{2}{5}

And now we can express the radius in terms of the dimensional analysis like this:

r=K A^{1/5} \rho^{-1/5} t^{2/5}

And K represent a constant in order to make the porportional relation and equality.

The problem says that we can assume the constant K=1.

And if we solve for the energy we got:

A^{1/5}=\frac{r}{t^{2/5} \rho^{-1/5}}

A= \frac{r^5 \rho}{t^2}

And now we can replace the values given. On this case t =0.025 s, the radius r =140 m, and the density is a constant assumed \rho =1.2 kg/m^2, and replacing we got:

A=\frac{140^5 1.2 kg/m^3}{(0.025 s)^2}=1.033x10^{14} \frac{kg m^2}{s^2}

And we can convert this into ergs we got:

A= 1.033x10^{14} \frac{kgm^2}{s^2} * \frac{1 x10^7 egrs}{1 \frac{kgm^2}{s^2}}=1.033x10^{21} ergs

And then we know that 1 g of TNT have 4x10^4 erg

And we got:

A=1.033x10^{21} ergs *\frac{Kg TNT}{4x10^{10} erg}=2.58x10^{10} Kg TNT

3 0
3 years ago
Other questions:
  • For a steel alloy it has been determined that a carburizing heat treatment of 15 h duration will raise the carbon concentration
    5·1 answer
  • Input Energy ---> Output Energy
    8·1 answer
  • If there are 16 signal combinations (states) and a baud rate (number of signals/second) of 8000/second, how many bps could I sen
    9·1 answer
  • PLEASE ANSWER FOR DRIVERS ED! WILL GIVE BRAINLIEST
    10·1 answer
  • A chemistry student accidentally drops a large mercury thermometer and it breaks. The thermometer contained 2 grams of mercury (
    13·1 answer
  • Which type of load is not resisted by a pinned joint? A) Moment B) Shear C) Axial D) Compression
    7·1 answer
  • 4. At what temperature does an engine run cleanest with least wear?
    11·1 answer
  • To remove a spark plug the technician would need a(n) ___socket​
    7·2 answers
  • What type of social engineering targets particular?.
    11·1 answer
  • Explain how to properly engage the safety latches on the Stan Design Pit Jack.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!